– Кто это? – заинтересовалась Галатея.
– Это уже новая история, которую вы услышите завтра. А сегодня пора спать.
Дзинтара закрыла книжку, несмотря на протестующие голоса детей, и улыбнулась:
– Не надо спешить! Терпение нужно не только учёным.
Примечания для любопытныхХантаро Нагаока (1865–1950) – известный японский физик. В 1904 году предложил первую планетарную модель атома с массивным положительным ядром и вращающимися вокруг него, как кольца Сатурна, отрицательными электронами.
Эрнст Резерфорд (1871–1937) – знаменитый британский физик из Новой Зеландии. Лауреат Нобелевской премии по химии (1908). Экспериментально доказал наличие крошечного плотного и тяжёлого ядра внутри сравнительно большого и почти пустого (в остальных областях) атома. Создатель известной школы физики: 12 учеников Резерфорда стали нобелевскими лауреатами.
Фредерик Содди (1877–1956) – известный британский радиохимик, лауреат Нобелевской премии по химии (1921).
Пётр Капица (1894–1984) – знаменитый советский физик. Работал вместе с Резерфордом в 1921–1934 годах. Лауреат Нобелевской премии по физике (1978).
Ганс Гейгер (1882–1945) – известный немецкий физик, работавший с Резерфордом. Создатель счетчика Гейгера (или Гейгера-Мюллера).
Эрнст Марсден (1889–1970) – известный английский физик, работавший с Резерфордом.
Сказка о суперсыщике Нильсе Боре, который отыскал связь между атомом Резерфорда, линиями Фраунгофера и кривой Планка
Тёмные полоски в солнечном спектре, открытые Фраунгофером, оказались супертайной. Всё было неизвестно: откуда они берутся; почему тёмные, а не светлые; чем обусловлена степень их темноты и что определяет их расположение в радуге спектра, то есть – что задаёт длину волны этих линий.
Длина волны стала практически единственной точной величиной, характеризующей спектральную линию. Сначала казалось, что тёмные полоски в солнечном спектре расположены случайно. Но постепенно выяснилось, что это не так. Длины волн линий, связанных с водородом, подчинялись простым закономерностям и могли быть описаны несложной математической формулой, которая позволяла вычислить длины волн целой серии спектральных линий. Различные серии спектральных линий были открыты швейцарским математиком Бальмером, американским физиком Лайманом, немецким учёным Пашеном. Все известные серии водородных линий обобщил шведский исследователь Ридберг в красивой формуле:
1/Длина волны = R (1/N2 – 1/K2).
Длина волны зависела от целых чисел N и K. Если положить N = 1, то изменение K от 2 до ∞ (в математике этот значок означает бесконечность) давало серию линий Лаймана. Для N = 2 и K от 3 до ∞ получалась серия Бальмера. А N = 3 и K от 4 до ∞ соответствовали линиям Пашена. R была константой, которая вычислялась при сравнении формулы Ридберга с реальным спектром.
Почему линии спектра водорода строго следуют простым числовым соотношениям? Это было загадкой. Её решением занялись физики-атомщики.
– Почему они? – удивился Андрей. – Какая связь между линиями Фраунгофера и радиоактивными веществами?
Дзинтара усмехнулась:
– Действительно, линии Фраунгофера – это солнечный свет и стеклянные призмы. Атомная физика Резерфорда – это высокое напряжение, гудящие вакуумные насосы и опасные радиоактивные вещества, от которых приходится отгораживаться свинцовыми пластинами, – ничего похожего на солнечные исследования Фраунгофера! Тем не менее между ними существовала тесная и таинственная связь, но, чтобы её раскрыть, понадобился не просто сыщик, а суперсыщик!
– Космический суперсыщик!
– Верно. Такой суперсыщик родился в семье академика Датской королевской академии. Его звали Нильс, и у него был брат Харальд. В доме отца Нильса собирались друзья-учёные и вели длинные беседы. Не многим детям посчастливилось слушать споры четырех академиков: философа, биолога, лингвиста и физика. Может, именно благодаря этим беседам умных и разносторонних людей Нильс приобрел удивительную широту взглядов и смелость мышления.
Нильс так хорошо учился по физике и математике, что уже в школе критиковал учебник физики – за то, что тот неправильно трактовал отдельные вопросы. Зато сочинения вызывали у него настоящую проблему. Бор был немногословен и иногда сдавал сочинение, состоящее из пары фраз.
В университете Нильс был «тяжёлым» студентом. Если по лаборатории прокатывался гулкий взрыв, преподаватель химии Бьеррум, даже не поворачивая головы в сторону виновника, сокрушенно говорил: «Это Бор».
Нильс Бор стал физиком и приехал в знаменитую Кавендишскую лабораторию к Томсону. Юноша был вдохновлён тем, что попал в легендарный Кембридж, где работали Ньютон и Дарвин, Максвелл и Рэлей. Но Бор не понравился Томсону: молодой датчанин начал с того, что дал своему новому руководителю оттиск статьи самого Томсона, где Бор тщательно отметил все ошибки корифея физики.
– Плохой старт! – засмеялся Андрей.
– Через год Бор переехал в Манчестер – к Резерфорду, создателю планетарной модели атома. Там ему было гораздо интереснее, чем у Томсона. Бор отнесся к качественной, ещё не получившей математического описания модели атома Резерфорда серьёзнее, чем сам Резерфорд. Бор считал, что на её основе можно создать детальную теорию атома. Сам же Резерфорд, чистый экспериментатор, полагал, что нужно ещё поднакопить экспериментальных данных.
В разгар этих споров и размышлений Бор должен был уехать из Манчестера, потому что в Копенгагене на 1 августа 1912 года была назначена его свадьба с прекрасной девушкой Маргарет. После свадьбы молодожены планировали отправиться в путешествие по Норвегии. Бор решил совместить научные интересы с личными и уговорил Маргарет поехать в свадебное путешествие в Шотландию, по дороге навестив Резерфорда. В результате молодые сначала остановились в Кембридже, где Нильс неделю доделывал статью, а Маргарет писала под диктовку и правила его английский. Затем они отправились в Манчестер, к Резерфорду, и вручили ему плод своего совместного труда. Сотрудники Резерфорда были потрясены тем, что их старый приятель, «простак-датчанин», отхватил такую красавицу. Лишь после этого молодожены отправились в двухнедельное свадебное путешествие по Шотландии.
– Все учёные такие… странные? – озадаченно спросила Галатея.
Дзинтара тяжело вздохнула, подняла глаза к потолку, что-то прикинула в уме и коротко ответила:
– Многие.
Она снова уткнулась в книжку.
– Осенью 1912 года Бор начал работать внештатным преподавателем в Копенгагенском университете. В течение года он написал и опубликовал три статьи, которые стали основой атомной физики и вехой в истории естествознания. Бор соединил не только строение атома и линии Фраунгофера, но и добавил в свою теорию, на первый взгляд совсем далёкую от них, плавную кривую Планка, которая описывала непрерывный спектр звёзд и электролампочек.
– Как он смог? – поразилась Галатея. – Объединить атом Резерфорда, линии Фраунгофера и электроламповую кривую Планка?
– Вообще говоря, этого никто не знает – как учёному приходит в голову гениальная идея, объединяющая столько разнородных физических фактов. Но Бору это удалось: он взял модель атома Резерфорда для водорода, где был всего один электрон, и ввел два существенных отличия планетарной модели атома от реальной Солнечной системы. Одно предположение накладывало запрет на свободное расположение орбит: если в Солнечной системе планеты могут вращаться по любым орбитам, в атоме их набор стал жёстко заданным. Зато второе предположение давало электронам невиданную ранее свободу: если реальные планеты, выбрав в момент рождения какую-то орбиту, оставались прикованы к ней навечно, то в атоме Бора электроны могли прыгать с орбиты на орбиту, словно птички по жёрдочкам.
– Птички на жёрдочках! – развеселилась Галатея.
– Да, трудно представить, что Юпитер скачет сначала на орбиту Марса, а потом прыгает в гости к Нептуну! – усмехнулся Андрей.
– Верно, способность к перемене орбит стала кардинальным отличием электрона в атоме от реальной планетной системы. Кроме того, Бор предположил, что в случае прыжка с верхней орбиты на нижнюю электрон выпускает порцию энергии в виде света или электромагнитного излучения. Перейти с нижней орбиты на верхнюю электрон может, только поглотив аналогичную порцию внешнего излучения. Частоту этого излучения Бор умножил на постоянную Планка и получил величину, которую счёл разницей в энергии между орбитами. Тем самым он неожиданно для самого себя объяснил существование серий спектральных линий Бальмера и Лаймана и даже вывел формулу Ридберга, выразив константу Ридберга через фундаментальные физические постоянные.
– Ой, для меня это тоже неожиданно! Как же он объяснил существование этих линий? – всполошилась Галатея.
– Ой, для меня это тоже неожиданно! Как же он объяснил существование этих линий? – всполошилась Галатея.
– Представьте себе десяток жёрдочек. Нижняя имеет первый номер, верхняя – десятый. Пусть по этим жёрдочкам прыгают весёлые птички – синички. Каждый прыжок птички вниз дает излучение определённой длины волны – спектральную линию. Чем больше расстояние между жёрдочками, тем больше энергия излучения – и, по формуле Планка, меньше его длина волны. Пусть на жёрдочках с номерами от двух до десяти сидит по птичке. И пусть каждая из них спрыгнет на пустую нижнюю орбиту-жёрдочку с номером один. Это породит серию ультрафиолетовых линий – серию Лаймана. Если же птички, сидящие на орбитах с третьей по десятую, перескочат не на первую, а на вторую орбиту, энергия излучения будет поменьше – это серия Бальмера из видимого диапазона. А если заставить птичек с орбит четыре-десять перепрыгнуть на орбиту три, мы получим инфракрасную серию линий Пашена.
– Вот оно что! Это не планетарная, а синичная модель атома! – прошептала поражённая Галатея.
– Если мимо наших жёрдочек будет пролетать световой квант подходящей энергии, синичка сможет поймать его и перепорхнуть на более высокую жёрдочку. Такие пойманные в атоме кванты света приведут к появлению тёмных линий Фраунгофера на фоне сплошного спектра. Если посмотреть на формулу Ридберга в свете модели атома Бора, то станет понятно, что число N – это номер орбиты, на которую перепрыгивают синички-электроны, а K – номер орбиты, на которой они сидели раньше. Конечно, число электронных орбит не ограничивается десятью – их бесконечно много, поэтому число К может увеличиваться до бесконечности, но формула Ридберга и правила Бора по-прежнему будут выполняться.
Интересно, что ещё в начале 1913 года Бор писал Резерфорду и своему другу Хевеши, который был пионером в использовании радиоактивных изотопов в биологических исследованиях, что не занимается вычислением частот наблюдаемых спектральных линий. Но ранней весной 1913 года на глаза Бору попалась книжка, где популярно объяснялись законы спектральных линий и приводилась формула Бальмера. Бора озарило – он понял, что закономерности расположения спектральных линий являются ключом к пониманию атома. Впоследствии он вспоминал, что, как только увидел формулу Бальмера, ему всё стало ясно.
– Вот так просто – увидел и понял? – недоверчиво спросила Галатея.
– Конечно, нет! Нужно долго и упорно думать над проблемой, чтобы она могла быстро решиться внезапным озарением. Новая теория Нильса Бора противоречила классической физике, потому что гласила: на стабильных орбитах электроны не излучают. А теория Максвелла утверждала, что заряженные частицы, двигающиеся по кругу, должны излучать. Бор утверждал: электроны могут испускать и поглощать только определённые порции энергии – световые кванты. Это тоже было странно и необычно для классических физиков, привыкших к непрерывным и ничем не ограниченным процессам. Но Бор знал о квантах Планка и показал, что атом и электронные структуры в нём построены на квантовании энергии. Теория Планка, созданная для свечения электролампочек, отвечала и за самые тонкие внутриатомные процессы.
Резерфорд отнесся к модели Бора с интересом, хотя заметил, что она не лишена противоречий, базируясь одновременно и на квантовой идее Планка, и на классической механике. Профессор написал Бору: «Ваши мысли относительно причин возникновения спектра водорода очень остроумны и представляются хорошо продуманными, однако сочетание идей Планка со старой механикой создает значительные трудности для понимания того, что же всё-таки является основой такого рассмотрения. Я обнаружил серьёзное затруднение в связи с Вашей гипотезой, в котором Вы, без сомнения, полностью отдаете себе отчёт; оно состоит в следующем: как может знать электрон, с какой частотой он должен колебаться, когда он переходит из одного стационарного состояния в другое? Мне кажется, что Вы вынуждены предположить, что электрон знает заблаговременно, где он собирается остановиться».
Корифеи науки Томсон и Рэлей не приняли новые идеи Бора. Лорд Рэлей высказал такое мнение о работе молодого датчанина: «Я её просмотрел, но не вижу, чем бы она могла быть мне полезна. Не берусь утверждать, что открытия так не делаются. Может быть, и делаются. Но меня это не устраивает». Эйнштейн заявил: «Если всё это правильно, то здесь – конец физики». Тем не менее много позже тот же Эйнштейн напишет, отдавая должное модели Бора: «Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточно, чтобы позволить Бору – человеку с гениальной интуицией и тонким чутьем – найти главнейшие законы спектральных линий и электронных оболочек атомов, включая их значение для химии. Это мне кажется чудом и теперь. Это – наивысшая музыкальность в области мысли».
Многие видные учёные, такие как Джинс и Лоренц, сразу заинтересовались новой теорией – уж очень изящно она объяснила спектральные линии водорода и водородоподобных атомов.
– Да, синички на жёрдочках – это красиво! – подтвердила Галатея.
– В середине сентября 1913 года в Англии проходила научная конференция, на которой присутствовали такие корифеи науки, как Томсон, Рэлей, Мария Кюри, Джинс и Лоренц. Дискуссия велась, в основном, вокруг только что опубликованных статей Бора.
Джинс во вступительном докладе отметил: «Доктор Бор пришёл к чрезвычайно остроумному, оригинальному и, можно сказать, убедительному толкованию законов спектральных линий».
В ответ на скепсис аудитории он решительно заявил:
«…важным подтверждением правильности этих предположений является тот факт, что они действуют на практике».
Интерес к теории Бора ничего не изменил в положении молодого преподавателя. В марте 1914 года Бор с горечью написал своему шведскому другу: «Занимаемая мною должность не предусматривает предоставления мне какой-либо лаборатории… Мои обязанности сводятся к преподаванию физики студентам-медикам и не имеют ничего общего с научными исследованиями; у меня нет никакой возможности получить учеников или ассистентов». Бор сообщил, что добивается открытия вакансии преподавателя по теоретической физике, но «факультет постоянно противится учреждению этой должности».
Бор оказался не только гениальным учёным, но и прекрасным организатором. За несколько лет он преодолел консерватизм датских научных кругов, стал профессором физики и добился выделения средств на создание современной лаборатории.
К 1920 году Нильс Бор сумел построить в Копенгагене Институт теоретической физики, который на многие десятилетия стал центром притяжения физиков-теоретиков и сейчас носит имя учёного. В 1922 году ему дали Нобелевскую премию по физике, а химический элемент номер 107, полученный в 1976 году в Дубне, назвали борием.
У Бора были свои представления о смелости научных теорий. Однажды он сказал знаменитому Паули про его новую теорию, которую тот изложил на семинаре: «Мы все считаем, что ваша теория безумна. Единственно, что нас беспокоит, – достаточно ли она безумна, чтобы быть правильной».
Ландау сказал про Бора: «У него была абсолютная безбоязненность нового, пусть самого невероятного и фантастического на первый взгляд… У него был вечно молодой мозг».
Бор вошел в историю как человек, сумевший проникнуть в главную тайну природы, связать строение крошечного атома и излучение огромных звёзд, перебросить мост между берегом старой классической физики и новой неизвестной землёй – квантовой физикой. По этому мосту устремилась армия молодых учёных, которые за несколько лет создали новую физику. Бурное время создания квантовой картины мира сейчас называют научной революцией.
Хотите узнать, что открыли учёные на новом берегу квантовой механики?
– Да! – воскликнула Галатея.
– Тогда поговорим об этом завтра.
Примечания для любопытныхНильс Бор (1885–1962) – гениальный датский физик, один из основателей современной науки. Лауреат Нобелевской премии по физике (1922).
Иоганн Бальмер (1825–1898) – швейцарский математик и физик. В 1885 году вывел формулу, описывающую расположение спектральных линий водорода в видимом диапазоне (серия Бальмера).
Теодор Лайман (1874–1954) – американский физик, вместе с Виктором Шуманом (1841–1913) открывший в 1906 году серию ультрафиолетовых линий водорода (серию Лаймана).
Фридрих Пашен (1865–1947) – немецкий физик, в 1908 году открывший инфракрасную серию линий водорода (серию Пашена).
Иоганн Ридберг (1854–1919) – шведский физик, который вывел общую формулу, описывающую длины волн для всех серий спектральных линий водорода и водородоподобных атомов.
Дьёрдь де Хевеши (1885–1966) – известный венгерский химик, один из открывателей химического элемента гафния. Лауреат Нобелевской премии по химии (1943).