Космические сыщики - Николай Горькавый 7 стр.


Планк был очень доволен. Оставалось понять, является ли полученная формула математическим трюком, не имеющим глубокого обоснования, или её можно вывести из первых принципов физики. Планк начал искать обоснование своему закону, опираясь на работы знаменитого Больцмана, который глубже всех современников понял термодинамику. После долгих усилий учёный выяснил, что его формула не получается из обычных принципов, зато прекрасно выводится, если предположить, что элементарный осциллятор может испускать волны только порциями, пропорциональными частоте волны v.

– Что такое осциллятор и почему он такой непонятный, хотя и элементарный? – озадаченно спросила Галатея.

– Герц открыл, что контур, в котором туда и обратно двигается поток электронов, излучает радиоволны. Если упростить контур Герца до предела, мы получим элементарный, то есть самый простой из всех возможных, осциллятор – электрический заряд или электрон, колеблющийся под воздействием какой-то внешней силы. Термин «осциллятор» произошёл от латинского слова oscillo – «качаюсь» и означает любую систему, которая совершает колебания, периодически повторяя во времени своё положение. Например, электрически заряженный и качающийся маятник часов будет неплохим примером такого осциллятора. Условие, которое Планк был вынужден положить в основу своей формулы, утверждало, что осциллятор не может испускать волны как захочет, а должен испускать энергию лишь отдельными порциями, квантами. Планк записал энергию такой порции в виде:

E = hv,

где h – постоянная, которую впоследствии стали называть постоянной Планка.

Это было очень странное условие, которое не следовало из обычных законов.

– В чём его странность? – заёрзала Галатея.

– Качающиеся или осциллирующие заряженные тела или частицы всегда испускают электромагнитные волны. Теория Максвелла не накладывала ограничений на такое излучение, а Планку пришлось «приказать» осцилляторам испускать энергию только порциями, и никак иначе.

Планк опубликовал свою теорию в 1900 году, но ни он сам, ни его коллеги не спешили признавать реальность странного условия. Усилиями Эйнштейна и других учёных теория световых квантов стала завоёвывать своё место в физике, но этот процесс был очень неспешным.

Всё изменилось в 1913 году, вскоре после того как молодой датчанин приехал в английский город Манчестер, чтобы поработать в лаборатории новозеландца Резерфорда. Он доказал, что кванты являются главным фундаментом строения материи, и с этого момента началась новая эпоха в науке. Об этом я расскажу в следующей сказке…

Главное, что аккуратный Макс Планк, который не собирался делать никаких открытий в физике, совершил открытие, полностью изменившее современную физику.

– Профессор Жолли был бы в ужасе! – засмеялся Андрей.

– Да, он не мог ожидать, что молодой человек, однажды постучавший в дверь его кабинета, полностью изменит здание мировой теоретической физики, которое было таким красивым и казалось профессору Жолли почти завершённым.

В 1918 году Планк получил за свои работы Нобелевскую премию. В настоящее время десятки научных учреждений Германии, которые занимаются фундаментальной наукой, объединены в Общество имени Макса Планка – как научные институты Германии, специализирующиеся на оптике и прикладных исследованиях, объединились в Общество Фраунгофера. Высшей наградой Германии за занятия теоретической физикой является медаль Макса Планка. Самое впечатляющее свидетельство его вклада в мировую науку – то, что среди пяти мировых фундаментальных констант: скорости света, заряда и массы электрона, гравитационной постоянной и постоянной Планка – лишь одна носит имя своего открывателя. Такая честь несопоставима даже с Нобелевской премией.

– Мама, – осторожно спросила Галатея, – а есть ещё какая-нибудь неизвестная и… неназванная мировая константа?

Дзинтара улыбнулась:

– Думаю, что есть. Но о существовании такой константы первым узнает тот, кто её откроет.

Галатея облегчённо вздохнула и заулыбалась.

Примечания для любопытных

Филипп фон Жолли (1809–1884) – физик-теоретик, профессор Мюнхенского университета. Его лекции слушал Макс Планк.

Макс Планк (1858–1947) – знаменитый немецкий физик, открывший квантование энергии. В его честь названа фундаментальная постоянная – постоянная Планка. Лауреат Нобелевской премии по физике (1918).

Вильгельм Вин (1864–1928) – известный немецкий физик, лауреат Нобелевской премии по физике (1911).

Генрих Рубенс (1865–1922) – известный немецкий физик-экспериментатор, активно исследовавший тепловое излучение.

Лорд Рэлей (Джон Уильям Стретт) (1842–1919) – знаменитый британский физик. Открыл рассеяние Рэлея, ответственное за голубой цвет неба. Лауреат Нобелевской премии по физике (1904).

Джеймс Джинс (1877–1946) – известный британский физик и астроном. Открыл гравитационную неустойчивость среды (неустойчивость Джинса).

Людвиг Больцман (1844–1906) – знаменитый австрийский физик, математик и философ, собиравший на свои лекции толпы народа. Развил статистическую механику атомов и молекул, которая легла в основу современной термодинамики и кинетической теории. Уравнение Больцмана – одно из самых известных уравнений статистической механики.

Сказка о Резерфорде, придумавшем космическую модель атома

Дзинтара открыла книгу и прочитала:

– «История атомной физики сложилась бы иначе, не будь в Шотландии так мало пахотных земель».

– Ты уверена, что в этой фразе нет ошибки? – осторожно спросила Галатея. – Может, здесь случайно склеились две фразы из разных историй?

– Сейчас увидим, – сказала озадаченно Дзинтара и продолжила чтение:

– «Из-за нехватки сельскохозяйственной земли в Шотландии британское правительство стало раздавать безземельным фермерам бесплатные билеты на пароходы, плывущие в отдалённые и малонаселённые английские колонии, где бедняки могли получить собственный участок земли. Шотландскому семейству Резерфордов достался бесплатный билет не в Канаду, как многим другим, более удачливым фермерам, а в более далёкую Новую Зеландию, где глава семейства стал выращивать лён. В семье было 12 детей, из которых четвёртый – Эрнст Резерфорд обладал прекрасной памятью, богатырской силой и здоровьем. Ещё он отличался от своей фермерской семьи, жившей на окраине мира, тем, что увлёкся наукой и захотел вернуться в Англию, где фермерам приходилось туго из-за тесноты, а учёным было полное раздолье.

Сильное желание – главный источник успехов человека. Эрнст прекрасно закончил школу и получил стипендию для обучения в лучшем колледже Новой Зеландии. В те времена там учились всего 150 студентов и преподавали семь профессоров, а сейчас этот колледж стал Новозеландским университетом.

В 21 год Эрнст закончил колледж, защитив магистерскую работу по радиоволнам, несколькими годами ранее открытым Герцем. Для их регистрации новозеландский магистр придумал радиоприёмник нового типа, основанный на намагничивании железа при высокочастотном разряде. Однако мечта об Англии по-прежнему оставалась мечтой. Что делать дальше?»

– Да, что дальше? – нетерпеливо спросила Галатея.

– Эрнст подал заявку на стипендию, позволявшую учиться в Англии. Но такая стипендия была всего одна на Новую Зеландию и выдавалась раз в два года. Резерфорд работал учителем в средней школе и с нетерпением ждал решения по своей заявке. К сожалению, стипендию выиграл другой человек.

– Эх! – расстроилась Галатея, болевшая за новозеландского фермера, увлечённого наукой.

– Но случилось неожиданное – выигравший отказался от стипендии и остался в Новой Зеландии. Вместо него в Англию поехал счастливый Резерфорд.

– Мечта сбылась! – засмеялась Галатея.

– Резерфорд прибыл в Кембриджский университет и приступил к работе в Кавендишской лаборатории, став аспирантом знаменитого Дж. Дж. Томсона.

– Чем же он был знаменит? – поинтересовался Андрей.

– Томсон был директором прославленной Кавендишской лаборатории Кембриджского университета и активно исследовал катодные лучи. Учёный доказал, что независимо от материала катода они состоят из одинаковых частиц с одним и тем же соотношением заряда к массе. Это отношение Томсон измерил по отклонению траекторий частиц в электрическом и магнитном полях и стал открывателем электронов – мелких заряженных частиц материи. В 1906 году он получит за это открытие Нобелевскую премию. Ленард, который тоже исследовал катодные лучи и был близок к доказательству того, что они состоят из частиц, упустил право называться открывателем электронов – и очень обиделся.

– Он и с рентгеновскими лучами опоздал! – удивился Андрей.

– Он и с рентгеновскими лучами опоздал! – удивился Андрей.

– Да, Ленарду хронически не везло. Хотя за исследование катодных лучей он получил Нобелевскую премию 1905 года, самые яркие открытия, связанные с этими лучами, уплыли из его рук.

Томсон не только открыл электроны, но и предположил, что они входят в состав вещества, то есть являются частичками атома. Раньше учёные рассматривали атомы как нечто целое и неделимое – Томсон первый попытался создать более детальную модель атома, которая должна была включать отдельные частицы – электроны. Но электроны, заряженные отрицательно, отталкиваются друг от друга. Значит, их взаимное отталкивание должно компенсироваться присутствием материи с положительным зарядом, чтобы атом в целом получился нейтральным. И Томсон выдвинул следующую гипотезу: атом – это массивное облако положительно заряженной материи, в котором, как изюм в пудинге, находятся лёгкие отрицательные электроны. Эту модель так и стали называть: «пудинговая модель атома».

– Звучит аппетитно! – одобрила Галатея.

– Таково было состояние дел в атомной физике и в Англии, когда туда прибыл крепкий новозеландский парень, сын фермера Эрнст Резерфорд. Приборов в лаборатории Томсона не хватало, учёные шутили: «В Кавендише, готовя эксперимент, надо было левой рукой собирать прибор, а правой держать обнажённый меч».

Уже в своих первых работах Резерфорд сделал важное открытие – обнаружил новый тип лучей. В 1898 году, используя естественный источник радиоактивного излучения, он показал, что в нём присутствует два вида частиц: положительно заряженные массивные альфа-частицы и отрицательно заряженные лёгкие бета-частицы, которые по-разному реагировали на магнитное поле, отклоняясь в разных направлениях.

– Что это за частицы? – спросила Галатея.

– Бета-частицы оказались электронами, которые открыл Томсон. Альфа-частицы были ядрами гелия, которые в тысячи раз тяжелее электрона. Через год физик Поль Виллар показал, что есть ещё и нейтрально заряженные частицы, которые не отклоняются в магнитном поле, – их назвали гамма-лучами. Эти гамма-лучи были электромагнитным излучением, только ещё более коротковолновым, чем рентгеновские лучи.

Работа молодого Резерфорда была очень успешной, но попасть в круг английских профессоров ему не удалось: осенью 1898 года ему предложили занять место профессора в канадском университете в Монреале.

– Он был вынужден снова уехать из Англии? – расстроилась Галатея.

– Да. Но Резерфорд доказал, что работать на мировом уровне можно даже в провинциальном университете. В Канаде он познакомился с младшим лаборантом Содди.

– Младший лаборант – это на одну ступеньку выше дворника? – спросил Андрей.

Дзинтара улыбнулась:

– За пять лет совместной работы, к 1903 году, Резерфорд и Содди создали теорию радиоактивного распада – так называемое правило Резерфорда-Содди. Тогда царило мнение о неделимости и неизменности атомов. Молодые исследователи опровергли это мнение, утверждая: «В результате атомного превращения образуется вещество совершенно нового вида, полностью отличное по своим физическим и химическим свойствам от первоначального вещества».

Одно из открытий Резерфорда началось с того, что сквозняк менял показания прибора. Один из сотрудников измерял радиоактивность тория с помощью электроскопа. Оказалось, что результаты эксперимента зависят от того, открыта или закрыта дверь в лабораторию.

– Какая-то мистика! – воскликнул Андрей. – Радиоактивность – явление на уровне атомного ядра, повлиять на него можно только с помощью… ну, например, атомного реактора. Сквозняк и радиоактивность никак не связаны!

– Не совсем так. Резерфорд начал исследовать «явление сквозняка» и догадался, что радиоактивный торий испускает газ – торон, тоже радиоактивный. Сдувая этот газ, сквозняк менял показания прибора! В науке не бывает мелочей, учитывать надо всё, вплоть до случайного ветерка. Позже выяснилось, что торон является одним из изотопов радиоактивного инертного газа радона.

После этих открытий, уже через несколько лет, в 1910 году, младший лаборант Содди стал академиком, или членом Королевского общества, а потом – нобелевским лауреатом.

– Вот как помогла ему дружба с сыном новозеландского фермера! – засмеялась Галатея.

– Эрнст Резерфорд тоже приобрел широкую известность и был выбран академиком в 1903 году. После восьми с лишним лет работы учёный покинул Канаду и триумфально вернулся в Англию. Весной 1907 года он начал работать профессором в Манчестерском университете, получая в два с половиной раза больше, чем в канадском университете. В следующем, 1908, году ему присудили Нобелевскую премию «за проведённые им исследования в области распада элементов в химии радиоактивных веществ». Узнав о премии, которую присудили почему-то по химии, а не по физике, Резерфорд произнёс ехидную крылатую фразу: «Вся наука – или физика, или коллекционирование марок».

В Манчестерском университете Резерфорд создал новую лабораторию, которая затмила своими результатами Кавендишскую. Кто-то сказал профессору:

– Вы – счастливый человек… Всегда на гребне волны!

– Да, но я сам и поднимаю эту волну, не так ли? – откликнулся самоуверенный Резерфорд.

Учёный из России, Пётр Капица, который работал в лаборатории Резерфорда, дал ему прозвище Крокодил. Капица так объяснял придуманное им прозвище: «Это животное никогда не поворачивает назад и потому может символизировать резерфордовскую проницательность и его стремительное продвижение вперёд».

Свой главный научный результат Резерфорд получил уже после присуждения Нобелевской премии. По его предложению в 1908 году физики Гейгер и Марсден стали изучать процессы рассеяния альфа-частиц на тонкой золотой фольге и получили загадочный результат: примерно 10 000 альфа-частиц пролетали сквозь фольгу, слегка отклоняясь от своего пути, но одна из них отклонялась сильно – вплоть до того, что летела назад.

– А что здесь загадочного? – спросила Галатея.

– Согласно Томсону, атом представлял собой рыхлое, положительно заряженное облако с вкраплениями электронов. Облако должно быть размером с атом. Электроны, которые весили в семь тысяч раз меньше, чем альфа-частицы, никак не могли отклонить их назад. Ещё с меньшим успехом это могло сделать рыхлое облако с положительным зарядом. Эрнст Резерфорд писал про отражение назад альфа-частиц: «Это было почти столь же невероятно, как если бы вы стреляли 15-дюймовым снарядом в кусок тонкой бумаги, а снаряд возвратился бы к вам и нанёс удар».

– Что такое 15-дюймовый снаряд? – влезла Галатея с посторонним вопросом.

Андрей поднял глаза к потолку, вздохнул и сообщил:

– Это снаряд из пушки с диаметром дула почти в 40 сантиметров.

– Ого… – испуганно притихла Галатея.

Дзинтара невозмутимо продолжила:

– Томсона итоги эксперимента не обескуражили: он полагал, что большое количество мелких отклонений может, суммируясь, развернуть некоторые альфа-частицы. Но его мнение не было подкреплено расчётом и не удовлетворяло цепкого и упрямого Резерфорда-Крокодила.

В 1904 году японский физик Нагаока предложил другую планетарную модель атома: в её центре находилось массивное положительное ядро, а вокруг, как кольца Сатурна вокруг планеты, вращались электроны. Резерфорд долго размышлял над результатами Гейгера и Марсдена и в 1911 году предложил свою планетарную модель атома, в которой крошечное положительное ядро было в десять тысяч раз меньше самого атома, но, благодаря своей массе и сильному электрическому полю, оно могло развернуть быстро летящие альфа-частицы.

– Верно! – просиял Андрей. – Ведь чем меньше радиус, тем сильнее поле. Это правило действует и для чёрных дыр, и для атомных ядер! Только поля у них разные – гравитационное и электрическое.

– Молодец, Андрей! – в свою очередь просияла Дзинтара. – Ты быстро соображаешь!

Галатея недовольно покосилась на брата.

– Не перебивай!

– Ничего, – успокоила её Дзинтара, – интересно же по ходу сказки обсуждать самые важные моменты. Итак, Резерфорд предложил свою модель атома. С одной стороны, он был ею очень доволен: «Теперь я знаю, как выглядит атом!» С другой – учёный рассматривал её как… рабочую модель, которая помогает объяснить интересные эксперименты, но которой далеко до настоящей теории. Однако среди учеников Резерфорда был человек, принявший всерьёз модель атома, созданную учителем.

– Кто это? – заинтересовалась Галатея.

– Это уже новая история, которую вы услышите завтра. А сегодня пора спать.

Дзинтара закрыла книжку, несмотря на протестующие голоса детей, и улыбнулась:

– Не надо спешить! Терпение нужно не только учёным.

Примечания для любопытных

Хантаро Нагаока (1865–1950) – известный японский физик. В 1904 году предложил первую планетарную модель атома с массивным положительным ядром и вращающимися вокруг него, как кольца Сатурна, отрицательными электронами.

Назад Дальше