В результате имеющихся при НЦД нарушений гемодинамики снижается толерантность организма к физическим нагрузкам. При выполнении последних степень прироста минутного объема не соответствует степени снижения периферического сопротивления у больных с гиперкинетическим типом кровообращения, а при гипокинетическом типе наблюдается более или менее выраженное снижение ударного объема, вероятно, вследствие уменьшения венозного возврата к сердцу.
Нарушение периферического кровообращения, выражающееся в спастических или атонических дисциркуляторных изменениях, отражается и на состоянии мозгового кровотока, особенно у больных со снижением артериального давления. Такие пациенты часто испытывают головные боли, головокружение, тошноту.
У больных НЦД в ряде случаев отмечаются выраженные расстройства микроциркуляции, особенно выраженные при гипертоническом синдроме. Отмечаются расширение венул, артериовенозные анастомозы, указывающие на переполнение кровью артериального микроциркуляторного русла и частичный ее переброс непосредственно в вены, минуя капилляры. Эти нарушения, по мнению Г.М. Покалева и В.Д. Трошина, играют определенную роль в формировании реологических нарушений крови и в конечном счете приводят к развитию дистрофических и некробиотических изменений тканевых элементов соответствующей области.
Болевые ощущения при НЦД чаще относят к категории кардиалгий. Предполагается, что боли в области сердца у больных НЦД могут возникать в результате ряда причин, к которым относят спазм левого купола диафрагмы, перенапряжение дыхательных межреберных мышц вследствие спазма или дыхательных расстройств, нарушение метаболизма миокарда. Не исключается участие коронароспазма в формировании болевых ощущений при НЦД.
В комплексных программах лечения больных НЦД лечебная физкультура и массаж занимают достойное место. Могут использоваться и классический, и сегментарный массаж с целью нормализации периферического сосудистого сопротивления и венозного возврата к сердцу, микроциркуляции в тканях, устранения патологических изменений в коже, миофасциальных структурах, нормализации артериального давления и положительного влияния на метаболические процессы в организме и миокарде и функцию систем регуляции кровообращения.
При гипертоническом клиническом типе НЦД классическому массажу подвергаются шейно-воротниковая зона (см. «Массаж при гипертонической болезни») и нижние конечности.
Массаж нижних конечностей проводится средней интенсивности с применением приемов поглаживания, растирания и разминания примерно в равных соотношениях, в положении пациента лежа на спине и на животе (или на боку, если тахикардия и кардиалгии усиливается в положении на животе). Особое внимание уделяется массажу крестца, где преимущественно проводится спиралевидное растирание и штрихование. На курс – 12 ежедневных процедур или по 12 процедур, чередуя массаж шейно-воротниковой зоны с массажем нижних конечностей.
При гипотоническом клиническом типе НЦД классический массаж проводится с воздействием на шейно-воротниковую зону, спину и нижние конечности. Массаж шейно-воротниковой зоны и спины выполняется по общепринятой схеме с использованием всех приемов. Массаж нижних конечностей проводится интенсивно, используя все приемы, также по общепринятому плану.
Сегментарный массаж проводится после диагностики тканевых изменений.
Литература
1. Аринчин Н.И., Володько Я.Т., Недвицкая Т.Д. Становление и развитие периферических «сердец» в онтогенезе. – Мн.: Наука и техника, 1986. – 208 с.
2. Белая Н.А. Руководство по лечебному массажу. – М., 1974.
3. Бирюков А.А. Спортивный массаж. – М.: ФиС. – 1972.
4. Вербов А.Ф. Лечебный массаж. – М., Селена, 1997.
5. Глезер О., Далихо А.В. Сегментарный массаж: пер. с нем. – М., 1990. – 126 с.
6. Джонсон П. Периферическое кровообращение. – М., 1982.
7. Дунаев И.В. Основы лечебного массажа / Учебное пособие. – М., Юкза, 2000. – 480 с.
8. Клинические классификации внутренних болезней // Пособие для врачей / Под ред. В.С. Гасилина, П.С. Григорьева – М., 2000. – 68 с.
9. Козлов В.И., Тупицын И.О. Микроциркуляция при мышечной деятельности. – М., 1982. – 132 с.
10. Kubik S. Атлас лимфатической системы нижних конечностей. – М., 2000. – 56 с.
11. Маколкин В.И., Аббакумов С.А. Нейроциркуляторная дистония в терапевтической практике. – М.: Медицина, 1985. – 192 с.
12. Маршал В. Дж. Клиническая биохимия: пер. с англ. – М., СПб.: БИНОМ, 2002. – 364 с.
13. Привес М.Г., Лысенков Н.К., Бушкович В.И. Анатомия человека. – М.: Медицина, 1969.
14. Фолков Б., Нил Э. Кровообращение: пер. с англ. – М.: Медицина, 1976. – 463 с.
15. Шейман Д.А. Патофизиология почки: пер. с англ. – М.: Восточная Книжная Компания, 1997. – 224 с.
7 глава Двигательная терапия при заболеваниях сердечно-сосудистой системы
Физические тренировки оказывают многогранное влияние на сердечно-сосудистую систему, повышая ее функциональные возможности. Формирование адаптивных процессов в системе кровообращения сопряжено с изменениями функций других систем. В процессе физических тренировок формируются механизмы, лежащие в основе адаптации, обеспечивающие тренированному организму преимущества перед нетренированным, которые характеризуются тремя основными чертами:
• тренированный организм может выполнять мышечную работу такой продолжительности и интенсивности, какую нетренированный не способен выполнять;
• тренированный организм отличается более экономным функционированием физиологических систем в покое и при умеренных физических нагрузках, а также способностью достигать при максимальных нагрузках такого высокого уровня функционирования этих систем, какого не способен достигнуть нетренированный;
• у тренированного организма повышается резистентность к повреждающим воздействиям и неблагоприятным факторам.
Изменения в организме под влиянием физических тренировок проходят фазы срочной и долговременной адаптации, при этом формируется так называемый структурный след (схема 7.1).
Схема 7.1. Формирование структурного следа при адаптации к физическим нагрузкам
На уровне системы кровообращения адаптация выражается прежде всего в развитии изменений в сердце, которые характеризуются увеличением числа митохондрий в кардиомиоцитах и массы мембран саркоплазматического ретикулюма, повышением активности систем гликолиза и гликогенолиза, активности транспортных АТФаз. В миокарде возрастает число капилляров и емкость коронарного русла, увеличивается содержание миоглобина, адренергических нервных терминалей. Следствием структурных изменений миокарда является увеличение максимальной скорости сокращения и расслабления сердечной мышцы, увеличение максимальных величин ударного и минутного объемов и частоты сердечных сокращений.
Увеличение мощности и одновременно экономности функционирования аппарата кровообращения формируется параллельно с изменениями функции дыхательной системы. Благодаря совершенствованию силовых и сократительных способностей дыхательной мускулатуры увеличивается ЖЕЛ и возрастает коэффициент утилизации кислорода. Вместе с увеличением МВЛ при физической работе и ростом массы митохондрий в скелетных мышцах достигается значительное увеличение аэробной мощности организма. Повышение способности дыхательного центра длительно поддерживать возбуждение на высоком уровне обеспечивает в тренированном организме возможность осуществлять в течение продолжительного времени максимальную вентиляцию при интенсивных физических нагрузках.
При формировании структурного следа изменяется аппарат нейрогормональной регуляции, в результате чего происходит перестройка двигательной реакции в ответ на изменения требований. Перестройка гормонального звена регуляции при тренированности приводит к повышению способности коры надпочечников синтезировать кортикостероиды и резервной мощности эндокринной функции поджелудочной железы. У тренированных людей снижается секреция инсулина, его концентрация в крови в покое и уменьшается инсулиновая реакция на введение глюкозы, углеводную пищу и физическую нагрузку.
Данные изменения инсулинового обмена связаны с повышением чувствительности к гормону скелетных мышц и других тканей в тренированном организме, что обусловлено как ростом чувствительности инсулиновых рецепторов, так и увеличением эффективности пострецепторных внутриклеточных процессов, «запускаемых» инсулином, в том числе повышением активности инсулинозависимых ферментов.
Эти изменения играют важную роль в благоприятном действии тренированности на жировой обмен, а также предупреждении ожирения и развития атеросклероза, так как уменьшение секреции инсулина в ответ на углеводную пищу уменьшает стимуляцию в печени синтеза триглицеридов, особенно липопротеидов низкой плотности. Кроме того, эти изменения являются основой использования тренированности как средства предупреждения и лечения гиперинсулинемии ожирения и диабета.
Эти изменения играют важную роль в благоприятном действии тренированности на жировой обмен, а также предупреждении ожирения и развития атеросклероза, так как уменьшение секреции инсулина в ответ на углеводную пищу уменьшает стимуляцию в печени синтеза триглицеридов, особенно липопротеидов низкой плотности. Кроме того, эти изменения являются основой использования тренированности как средства предупреждения и лечения гиперинсулинемии ожирения и диабета.
Структурные изменения в аппарате управления мышечной работой на уровне ЦНС создают возможности мобилизовать большое число моторных единиц при нагрузке, приводят к совершенствованию межмышечной координации, повышению работоспособности мышц.
Увеличение силы и выносливости мышц, особенно нижних конечностей, способствует повышению функции экстракардиальных факторов кровообращения. К ним относят сокращение и расслабление мышц, клапанный аппарат вен, присасывающую функцию грудной клетки, полостей сердца и крупных сосудов, изменение артерио-венозной разницы по кислороду. Значительную роль в кровообращении играет также «внутримышечное сердце» – постоянное сокращение отдельных миофибрилл скелетных мышц, создающих вибрацию, которая передается на стенки сосудов. Следовательно, чем больше число и мощность функционирующих единиц, тем больше активизируется периферическое кровообращение.
...В настоящее время многие заболевания сердечно-сосудистой системы относят к психосоматическим, ведущей причиной которых является психоэмоциональный стресс. С одной стороны, стресс является защитной приспособительной реакцией, мобилизирующей организм на преодоление препятствий, мешающих нормальной жизнедеятельности, особенно в тех многих конфликтных ситуациях, когда субъект ограничен в возможностях удовлетворения своих ведущих жизненно важных биологических или социальных потребностей.
По Г. Селье, проявления стресса, направленные на формирование приспособительных механизмов, обозначены как эустресс , а приводящие к дисфункции – дистресс . При дистрессе сначала временно, а затем устойчиво поражаются механизмы саморегуляции различных функциональных систем.
Ведущим фактором патогенеза психосоматических заболеваний при эмоциональном стрессе является окислительный, или оксидантный, фактор. Стресс вызывает накопление в тканях свободных радикалов, ведущих к свободному перекисному окислению липидов мембран различных клеток, особенно нейронов головного мозга, при этом в ЦНС происходит изменение чувствительности нейронов к нейромедиаторам и олигопептидам. Это, в свою очередь, приводит к формированию очага застойного возбуждения, ведущего к стойкому нарушению механизмов саморегуляции АД.
В механизмах эмоционального стресса принимает участие и окись азота (NO). Блокада NO-синтазы – ключевого фермента образования NO в организме – повышает чувствительность к стрессорным нагрузкам. Дефицит NO приводит к сужению под влиянием нейромедиаторов кровеносных сосудов, вследствие чего повышается АД и нарушаются функции сердца, почек и других органов. Под влиянием дистресса происходит и снижение иммунитета.
Указанные изменения сначала носят преходящий, транзиторный характер и легко устраняются, если субъект выходит из конфликтной ситуации. Однако при длительных, особенно непрерывных, конфликтных ситуациях наблюдается суммация изменений, что ведет к выраженной поломке механизмов саморегуляции кровообращения, в результате чего измененные физиологические функции начинают проявляться и вне конфликтной ситуации, становясь стойкими и часто необратимыми. Следовательно, чем раньше вмешаться в динамику формирования психосоматических расстройств при эмоциональном стрессе, тем более эффективны будут антистрессорные мероприятия, среди которых большая роль принадлежит движениям.
Как показали экспериментальные исследования, у устойчивых к эмоциональному стрессу животных преобладают парасимпатические влияния на сердце. У таких особей в гипоталамусе имеется более выраженное содержание катехоламинов, веществ Р-пептида, вызывающего дельта-сон, бета-эндорфина и антиоксидантов. Выявление этих факторов открыло возможность направленного повышения устойчивости предрасположенных к стрессу субъектов с помощью специальных воздействий, к которым прежде всего относятся физические тренировки в аэробном режиме.
Адаптация к физическим нагрузкам сопровождается формированием звеньев физиологической защиты кровообращения и характеризуется повышением мощности антиоксидантных систем, лимитирующих стрессорные повреждения, в развитии которых существенное значение имеет активация перекисного окисления липидов. Кроме того, адаптация характеризуется повышением резистентности организма к факторам, повреждающим сердце и систему кровообращения в целом, а также снижением потребности миокарда в кислороде при равных нагрузках у тренированных и у нетренированных.
В процессе адаптации увеличивается способность тканей извлекать кислород из крови за счет повышения концентрации миоглобина и мощности митохондриальной системы в скелетной мускулатуре; повышается резистентность сердца и системы кровообращения к большим нагрузкам, гипоксии и ишемии вследствие меньшей мобилизации симпатико-адреналовой системы при физических нагрузках.
Значительная роль в физиологической защите системы кровообращения принадлежит увеличению мощности системы энергообеспечения миокарда, что в значительной степени способно предупреждать нарушения его метаболизма, депрессию сократительной функции и другие нарушения, обусловленные перегрузкой сердца. Креатинфосфатная система является одним из защитных механизмов работы сердца в стрессорных условиях (гипокинезия, гиподинамия, гипоксия и пр.). При ишемии сердца креатинфосфатная система первой начинает компенсаторно реагировать: резкое снижение сократительной способности в начале ишемии миокарда является прямым следствием падения содержания в миокарде фосфокреатина и АТФ. Энергообеспечение пораженных участков переходит на анаэробный гликолиз. Последний при ишемии представляет собой единственный источник энергии, которая расходуется на поддержание трансмембранных градиентов электролитов и структурной целостности мембран.
Программы для профилактики и лечения сердечно-сосудистых заболеваний должны соответствовать функциональному состоянию этой системы и всего организма, его толерантности к физическим нагрузкам, которая может быть определена при проведении проб с физической нагрузкой с помощью велоэргометра или тредмила.
Величина пороговой нагрузки для лиц, не страдающих ИБС, определяется при достижении пациентом 75%, а лучше 85% уровня от максимальной возрастной частоты сердечных сокращений, определяемой по формуле: 220 – возраст и отсутствие при этом стенокардии и ишемических изменений сегмента ST.
Исследование лиц, страдающих ИБС, проведение пробы с физической нагрузкой ставит перед собой цель – выявить начальные признаки ухудшения состояния сердечно-сосудистой системы при физическом напряжении (ишемическое смещение сегмента ST на 1 мм или более и/или приступ стенокардии) с тем, чтобы предотвратить опасное усугубление начавшихся изменений и установить уровень нагрузки, который вызвал их, т.е. величину пороговой нагрузки. Под начинающимся изменением состояния сердечно-сосудистой системы больных ИБС при пробе с физической нагрузкой понимается ухудшение кровоснабжения миокарда, ослабление сократительной способности сердца, нарушение процессов возбудимости в миокарде. В таких случаях проба прекращается по общепринятым критериям.
Частота сердечных сокращений при пороговой нагрузке является величиной, с помощью которой рассчитывается пульс при физических тренировках. В зависимости от возраста, пола, наличия заболевания и степени тренированности человека во время занятий физкультурой (лечебной или по программе общей физической подготовки – ОФП) максимальный тренирующий пульс колеблется от 50% до 85% порогового, а 80–85% от тренировочного пульса является минимальным. Для групп ОФП максимальный тренирующий пульс может быть рассчитан в начале тренировок по формуле: 0,5 × (220 – возраст), а при повышении тренированности: 0,70 × (220 – возраст), при этом 25–50% аэробной мощности ≅ 50–70% mx возрастного пульса (220 – возраст).