Объяснение заключается в функции белка обратной транскриптазы. Данный фермент прикрепляется к РНК, копирует ее обратно в ДНК и встраивает полученный фрагмент ДНК в геном. Это обратный билет для генов, покинувших геном. С помощью обратной транскриптазы вирус СПИДа встраивает свой геном в хромосому человека — лучший способ спрятаться и копироваться вместе с хромосомой, не затрачивая на это никакого труда. Множество генов обратной транскриптазы — это тела вирусов, выстроившихся когда-то давно или недавно в геном человека и оставшихся здесь на века, а может, на время. Несколько тысяч таких инертных вирусных частиц насчитывается во всех хромосомах человека. В общей сложности человеческие эндогенные ретровирусы (human endogenous retroviruses, Hervs) составляют 1,3% длины всего генома. Может показаться, что это не так много, но следует вспомнить, что все родные гены человека составляют всего 3% длины генома. Если идея о том, что вы произошли от обезьяны, ранит ваше достоинство, то задумайтесь над тем, что с еще большей уверенностью можно сказать, что мы все произошли от вирусов.
Но что делают все эти вирусы в нашем геноме? В действительности большинство из них уже нельзя назвать вирусами. Они потеряли многие свои гены, в некоторых случаях осталась одна обратная транскриптаза. На каком-то этапе активный паразит прекратил свой небезопасный бизнес заражения окружающих людей с помощью слюны или во время полового акта, а вместо этого устроился бесплатным пассажиром в хромосоме и передается уже не от человека к человеку, а из поколения в поколение. Генетический паразит в чистом виде. При этом некоторые бывшие вирусы, называемые ретротранспозонами, продолжают копировать себя, плодясь внутри генома в невероятных количествах.
Наиболее известным из них является самокопируемая последовательность ДНК, называемая LINE-i. Это «абзац» ДНК длиной от 1 ООО до 6 ООО «букв», ближе к середине которого находится пропись обратной транскриптазы. Последовательность LINE-i не только часто встречается в геноме — насчитывается более 100 ООО копий, — но еще и склонна к образованию колоний. В некоторых местах на хромосомах этот «абзац» текста повторяется множество раз, образуя длинную цепь. LINE-i занимает своими копиями 14,6% генома, т.е. эта последовательность встречается примерно в 5 раз чаще, чем нормальные гены человека. При этом пандемия LINE-i продолжается. Вся последовательность LINE-i может транскрибироваться с хромосомы, синтезировать свой собственный белок обратную транс- криптазу, которая опять превращает РНК LINE-i в ДНК и встраивает новую копию в любом месте генома. Вот почему в геноме так много копий LINE-i. Возмутительно, не правда ли? Наш геном полон генов, которые хороши лишь тем, что могут успешно копировать себя. «У блохи есть меньшая блоха, которая живет на ней, а ту кусает еще меньшая блоха, и так до бесконечности». Последовательность LINE-i в этом плане не исключение. На ней успешно паразитирует другой, более мелкий, но еще более успешный паразит — ретротранспозон Alu. Этот ретротранспозон давно забросил куда-то свою обратную транскриптазу (а зачем она ему, когда вокруг так много LINE-i), сократив свое тельце всего до 180-280 «букв». Несмотря на то что в тексте Alu не записана структура никаких белков, он успешно транскрибируется и использует чужие обратные транскриптазы для возвращения своих копий в геном. Всего в геноме человека более 2 млн копий Alu, которыми заполнено 10% генома человека (Kazazian Н. Н., MoranJ. V. 1998. The impact of retrotransposones on the human genome. Nature Genetics 19: 19-24).
Последовательность нуклеотидов в Alu очень сильно напоминает один настоящий ген — ген белка, который входит в состав рибосомы, — органеллы, выполняющей синтез белков в соответствии с кодом, записанным в РНК. Насколько случайно такое сходство, пока неизвестно. Характерной особенностью этого гена является наличие так называемого внутреннего промотора — особой последовательности ДНК, которая для белков, выполняющих считывание генов с хромосом, служит призывной надписью: «ПРОЧТИ МЕНЯ». Обычно промоторы находятся перед началом гена, но в данном случае команда на чтение гена объединена с самим геном, что объясняет столь высокую частоту его копирования. Alu, скорее всего, является псевдогеном. Псевдогены в большинстве своем — это остатки генов, которые в результате мутаций утратили свои функции, но благодаря свойству самокопирования зависли на грани существования и исчезновения. Они остаются балластом в геноме и продолжают накапливать мутации. В конце концов, они совсем перестают напоминать гены, от которых произошли. Например, один псевдоген повторяется в хромосоме 14 раз на 11 хромосомах. Когда-то это были 14 копий одного, вероятно, важного гена, который утратил свое значение в ходе эволюции. Мутации в «молчащих» генах стали стремительно накапливаться, поскольку не вели ни к каким положительным или отрицательным последствиям для организма. В результате в геноме появилось 14 призраков, отдаленно напоминающих гены. Это не единственный пример, но что интересно, именно эти 14 генов обнаружены также в геномах обезьян. По крайней мере три копии этого гена уже не функционировали, когда приматы разделились на обезьян Старого и Нового Света. Это свидетельствует о том, затаив дыхание, говорят ученые, что эти гены утратили свои функции и остаются балластом на протяжении вот уже почти 35 млн лет (Casane D. et al. 1997. Mutation pattern variation among regions of the primate genome.Journal of Molecular Evolution 45: 216-226).
Милли (iiii.i копий Alu накопились в нашем геноме относительно недавно. Эта последовательность известна только у приматов. Различают пять подтипов Alu, причем один подтип появился уже после того, когда наши предки отделились от предков шимпанзе, т.е. в течение последних 5 млн лет. У других животных есть свои внутренние генетические паразиты. Так, в геноме мышей было обнаружено много копий другой последовательности, названной Bi.
Последовательности LINE-i и Alu были открыты и подсчитаны недавно, что привело ученых в шок. Оказывается, наш геном — это большая помойка. Он напоминает компьютер, зараженный разнообразными вирусами, способными только к копированию самих себя и заполонившими весь жесткий диск. Примерно 35% генома представлено эгоистичными псевдогенами. Каждый раз, когда клетка копирует хромосомы перед делением, она тратит 35% энергии впустую. В нашем геноме давно пора навести порядок.
Никто не ожидал таких результатов. Когда ученые только приближались к геному как к святыне, никто не мог себе представить, что основными его жильцами будут неконтролируемые и эгоистичные псевдогены. Хотя нам следовало это предвидеть, поскольку все предшествующие уровни жизни также кишели паразитами: черви в кишечнике, бактерии в крови и вирусы в клетках. Почему бы в геноме не развестись ретротранспозонам? Кроме того, с середины 70-х годов прошлого столетия среди биологов-эволюционистов появилось и крепнет представление о том, что в основе естественного отбора лежит не столько состязание между видами, или подвидами, или отдельными особями, сколько состязание между генами, использующими организмы или их сообщества в качестве временных «боевых слонов» для борьбы с другими генами. Именно поэтому, вместо того чтобы с наслаждением и комфортом провести собственную жизнь, все живые организмы расходуют всю свою энергию и рискуют жизнью ради того, чтобы родить и вырастить свое потомство. И все живые организмы устроены так, что очень быстро стареют и умирают после прохождения репродуктивного периода жизни, а в случае с тихоокеанским лососем — умирают одновременно с появлением своего потомства. В этом нет никакого здравого смысла, если посмотреть на жизнь глазами эгоиста, но в этом есть огромный смысл для эгоистичных генов, управляющих нами изнутри как своими гоночными машинами, чтобы победить в соревновании и оставить как можно больше копий самих себя. Генам не важна продолжительность жизни отдельной особи. Им важно, чтобы эта особь оставила после себя как можно больше потомков в следующем поколении. Если гены «эгоистичны», а наши тела — это лишь их «машины» (спорная терминология, позаимствованная у Ричарда Докинза (Richard Dawkins)), то стоит ли удивляться, что некоторые гены нашли способ размножаться, даже не связывая себя никакими обязательствами перед организмом. Нет также ничего удивительного в том, что геном, как и организмы, оказался сам полем боя и эволюционного соревнования между генами. С 70-х годов прошлого столетия эволюционная биология стала наукой не о животных, а о генах.
В 1980 году двое ученых впервые попытались объяснить наличие в геноме огромных локусов ДНК, не кодирующих белки, тем, что эти локусы заполнены эгоистичными генетическими элементами, занятыми лишь копированием самих себя. «Поиск других объяснений, — пишут они, — может быть полезной тренировкой ума, но бесполезен в плане результатов». За такое дерзкое предсказание они были высмеяны научным миром. В среде генетиков того времени все еще царило убеждение, что если в геноме человека что-то есть, то это должно быть наполнено определенным значением для человека, а не для самого себя. Гены представлялись всего лишь прописями белков. Смешно было думать, что они преследуют какие-то собственные далеко идущие планы. Но предположение об эгоистичной природе генов вскоре было блестяще доказано. Хотя гены не могут мыслить и строить планы, те из них, которые отличаются эгоистичным нравом, просто копируют и продлевают себя, в то время как все остальные быстро сходят со сцены (Doolittle W. Е, Sapienza С. 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601-603; Orgel 1. E„ Crick E H. C. 1980. Selfish DNA: the ultimate parasite. Nature 284: 604-607).
Сегменты эгоистичной ДНК— это не просто бесплатные пассажиры, чье присутствие просто увеличивает длину хромосом и приводит к большим затратам энергии во время их копирования. Эти сегменты еще нарушают целостность генов. Поскольку эгоистичные сегменты имеют обыкновение перепрыгивать с места на место или встраивать свои копии в любом месте на хромосомах, иногда случается, что они появляются внутри действующего гена, разрывая его на части, а потом перескакивают в новое место, вновь сшивая ген в прежнем месте. Именно такое поведение транспозонов впервые описала в 1940 году блестящий ученый-генетик Барбара Мак-Клинток (Barbara McClintock), которую ученый мир долго игнорировал и не замечал. (В конце концов за свои открытия она была удостоена в 1983 году Нобелевской премии.) Свое открытие она сделала, наблюдая за изменениями цвета зерен кукурузы в початках — признак, безусловно, наследуемый, но передающийся с нарушениями закона Менделя, что можно было объяснить только обратимой мутацией в гене, определяющем цвет зерен (McClintock В. 1951. Chromosome organisation and genetic expression. Cold Spring Harbor Symposia on Quantitative Biology 16: 13-47).
В геноме человека ретротранспозоны LINE-i и Alu также вызывают мутации, «приземляясь» в середине генов. Например, разрывая на части ген фактора сворачиваемо- сти крови, они вызывают гемофилию. Но по пока непонятным причинам наш геном в меньшей степени страдает от транспозонов, чем геномы других организмов. В среднем только 1 из 700 мутаций у человека вызывается «прыгающими генами», тогда как у мышей примерно 10% мутаций связано с активностью транспозонов. Потенциальная опасность транспозонов была продемонстрирована в 1950-х годах в экспериментах на плодовых мушках дрозофилах.
Дрозофилы — излюбленный объект для генетических исследований. Для чистоты экспериментов обычно используют мушек одного вида, Drosophila melanogaster, которых развели в лабораториях всего мира. Естественно, мелкие, едва заметные мушки часто сбегают из лабораторий и скрещиваются с аборигенными видами. Один из родственных видов мушек, Drosophila willistoni, несет в своем геноме активный транспо- зон, названный Р-элементом. Однажды в 50-х годах прошлого столетия где-то в Южной Америке вероятно в результате кровосмешения Р-элемент из Drosophila ivillistoni перепрыгнул в Drosophila melanogaster. (Одна из угроз, которую несут в себе так называемые ксенотрансплантанты — органы свиньи или бабуинов, используемые для лечения людей, — состоит в том, что с этими органами в геном человека могут попасть чужеродные транспозоны, так, как это произошло с Р-элементом у плодовых мушек.) С тех пор Р-элемент распространился среди плодовых мушек как степной пожар. Сейчас этот транспозон может быть обнаружен практически в любой дикой плодовой мушке, хотя это уже не та форма, которая впервые была зарегистрирована в 1950-х годах. Р-элемент отличался способностью встраиваться в гены и инактивировать их. Со временем у мушек сработали какие- то механизмы подавления транспозона и его копии застыли в геноме вечными бесплатными пассажирами.
В геноме человека такие активные разрушители генов, как Р-элемент, пока не зарегистрированы. Похожий транспозон с именем «спящая красавица» был обнаружен в лососе. Когда в лабораторных условиях его внедрили в культуру клеток человека, он проявил незаурядную способность «скакать» по хромосомам, разрушая встречающиеся гены. Видимо, что-то подобное когда-то произошло и с транспо- зоном Alu, который был занесен в геном предков человека. Перенос скачущих генов от вида к виду сначала вызывает их бурную экспансию, пока геном не выработает механизмы подавления транспозона, после чего его малоактивные или инактивированные копии навсегда остаются «вшитыми» в геном. Тот факт, что гены человека сейчас не сильно
Страдают от активности транспозонов, говорит о том, что последняя инвазия случилась довольно давно, и геном уже успел справиться с ней.
В этом плане, как и во многих других, нам очень повезло в отличие от мушек дрозофил. Механизм подавления транспозонов у нас один и тот же. Согласно последней теории этот механизм состоит в метилировании цитозина. Цитозин, как вы помните, это «буква» С в генетическом алфавите. Метилирование, или, другими словами, добавление к цитозину метильной группы из атома углерода и трех атомов водорода, препятствует считыванию информации с генов. Большинство генов в геноме, а также их промоторы (структуры в начале генов, запускающих их считывание) находятся в заблокированном состоянии. Общепризнано, что метилирование в клетках используется для отключения генов, которые не нужны в данной ткани. Вот почему мозг отличается от печени, а печень от кожи и т.д. Но недавно получила подтверждение альтернативная теория назначения метилирования ДНК, согласно которой этот процесс не столь важен для дифференциации тканей, как для подавления транспозонов и других внутригеномных паразитов. Действительно, ДНК ретротранспозонов Alu и LINE-i наиболее метилирована в геноме. На ранних стадиях развития эмбриона в клетках почти нет метилированной ДНК и все гены находятся в рабочем состоянии. В это время особые белки проходят с инспекцией вдоль всех хромосом, распознают и метилируют гены вирусов и транспозонов. Первое, что происходит в раковых клетках, — это демитилирование ДНК. В результате все генетические паразиты оказываются на свободе и быстро увеличиваются в числе. Именно в результате их активности в раковых клетках стремительно накапливаются мутации, до неузнаваемости изменяя клетки. Метилирование — это первый рубеж, который выстраивает клетка против проникших в нее генетических паразитов (Yoder J. A. et al. 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends in Genetics 13: 335-340).
Генетические паразиты чрезвычайно разнообразны по размерам и поведению. LINE-i состоит примерно из 1 400 «букв», Alu содержит как минимум 180 «букв», но есть еще более мелкие элементы, способные к копированию себя в длинные повторяющиеся последовательности. Их даже трудно назвать паразитами. Они не способны прыгать по геному и разрушать гены, но они существуют только потому, что способны обманным способом копировать себя. Именно эти короткие чередующиеся последовательности ДНК нашли применение в криминалистике. Познакомьтесь с «гипервариабельным минисателлитом». Эти последовательности не обошли своим вниманием ни одной хромосомы и образовали более 1 ООО колоний по всему геному. И во всех случаях данный участок хромосомы представляет собой множество повторов одного «слова» длиною примерно в 20 «букв». Само «слово» может меняться в разных местах хромосомы и у разных людей, но чаще всего оно представлено такой последовательностью нуклеотидов: GGGCAGGAXG (где X— любой нуклеотид). Интересно, что эта последовательность очень напоминает аналогичный генетический элемент в геномах микроорганизмов, где он служит точкой инициации процесса обмена генами между бактериями одного вида. Есть данные, что и в геноме человека эти последовательности вовлечены в обмен генами между хромосомами. Для соответствующих белков эта последовательность выступает в роли транспаранта «ЗАМЕНИ МЕНЯ».
Посмотрите, примерно так выглядит минисателлит:
GGGCAGGATG-GGGCAGGATG-GGGCAGGATG-
GGGCAGGATG-GGGCAGGATG-GGGCAGGATG-
GGGCAGGATG-GGGCAGGATG-GGGCAGGATG-
GGGCAGGATG
В данном случае у нас 10 повторов одного «слова». В других местах на хромосомах (а таких мест тысячи) может быть от 5 до 50 повторов. Следуя инструкциям, клетка приступает к обмену между аналогичными последовательностями минисателлитов на одной или разных хромосомах.
При этом обмен происходит случайным образом, в результате чего в одном месте количество повторов уменьшается, а в другом — увеличивается. Такие обмены случаются достаточно часто, чтобы гарантировать, что у каждого человека образуется совершенно уникальное чередование минисателлитов в хромосомах. В то же время этот процесс не настолько быстрый, чтобы нельзя было заметить явное сходство между родителями и детьми. Сравнение повторов в тысячах серий минисателлитов позволяет достоверно установить родственные связи и идентифицировать человека по биологическим образцам.
Минисателлиты впервые были обнаружены совершенно случайно Алеком Джеффри (Alec Jeffreys) и его помощницей Вики Уилсон (Vicky Wilson) в 1984 году. Они изучали эволюцию генов, сравнивая между собой гены человеческого мышечного белка миоглобина и аналогичного белка тюленей, и вдруг в середине гена обнаружили серию повторяющихся последовательностей ДНК. Поскольку «слова» во всех минисателлитах почти одинаковы, но количество повторов разное, они оказались удобными элементами для обнаружения их в геноме и подсчета отличий между индивидами. Оказалось, что число повторов в одном и том же месте на хромосоме настолько изменчиво, что минисателлиты могут служить генетическими «отпечатками пальцев». Полоски минисателлитов на генетической карте хромосомы выглядят, как штрих-код на товарах в супермаркете. Джеффри сразу же осознал значимость своего открытия. Забыв о гене миоглобина, который был темой его исследований, он разрабатывает различные методы применения минисателлитов на практике. Созданием базы данных минисателлитов первыми заинтересовались иммиграционные службы. Они решили, что с помощью биологических тестов можно определять, есть ли у человека, подавшего заявление на получение туристической визы для поездки в какую-либо страну, близкие родственники, которые уже ранее проникли в эту страну и осели там. Генетическая идентификация на практике показала всю свою мощь. Но наиболее широкое применение этот метод нашел в криминалистике, о чем речь пойдет ниже (Jeffreys A. J. et al. 1985. Hypervariable 'minisatellite' regions in human DNA. Nature 314: 67-73).