Все М есть Р.
Все S есть М.
Все S есть Р.
В зависимости от положения среднего термина в посылках (является он субъектом или предикатом в большей и меньшей посылках) различаются четыре фигуры силлогизма. Схематически фигуры изображаются так:
По схеме первой фигуры построен силлогизм:
Все птицы (М) имеют крылья (Р).
Все страусы (S) – птицы (М).
Все страусы имеют крылья.
По схеме второй фигуры построен силлогизм:
Все рыбы (Р) дышат жабрами (М).
Киты (S) не дышат жабрами (М).
Все киты не рыбы.
По схеме третьей фигуры построен силлогизм:
Все бамбуки (М) цветут один раз в жизни (Р).
Все бамбуки (М) – многолетние растения (S).
Некоторые многолетние растения цветут один раз в жизни.
По схеме четвёртой фигуры построен силлогизм:
Все рыбы (Р) плавают (М).
Все плавающие (М) живут в воде (S).
Некоторые живущие в воде – рыбы.
Посылками и заключениями силлогизмов могут быть категорические суждения четырех видов: SaP, SiP, SeP и SoP.
Модусами силлогизма называются разновидности фигур, отличающиеся характером посылок и заключения.
Всего с точки зрения всевозможных сочетаний посылок и заключения в каждой фигуре насчитывается 64 модуса. В четырех фигурах 4 × 64 = 256 модусов.
Силлогизмы, как и все дедуктивные умозаключения, делятся на правильные и неправильные. Задача логической теории силлогизма – систематизировать правильные силлогизмы, указать их отличительные черты.
Из всех возможных модусов силлогизма только 24 модуса являются правильными, по шесть в каждой фигуре. Вот традиционно принятые названия правильных модусов первых двух фигур:
1-я фигура: Barbara, Celarent, Darii, Ferio, Barbari, Celaront;
2-я фигура: Cesare, Camestres, Festino, Baroco, Cesaro, Camestros.
В каждом из этих названий содержатся три гласных буквы. Они указывают, какие именно категорические высказывания используются в модусе в качестве его посылок и заключения. Так, название Celarent означает, что в этом модусе первой фигуры большей посылкой является общеотрицательное высказывание (SeP), меньшей – общеутвердительное (SaP) и заключением – общеотрицательное высказывание (SeP).
Из 24 правильных модусов силлогизма 5 являются ослабленными: заключениями в них являются частноутвердительные или частноотрицательные высказывания, хотя в случае других модусов эти же посылки дают общеутвердительные или общеотрицательные заключения (ср. модусы Cesare и Cesaro второй фигуры). Если отбросить ослабленные модусы, остаётся 19 правильных модусов силлогизма.
Для оценки правильности силлогизма могут использоваться круги Эйлера, иллюстрирующие отношения между объёмами имён.
Возьмём, для примера, силлогизм:
Все металлы (М) ковки (Р).
Железо (S) – металл (М).
Железо (S) ковко (Р).
Отношения между тремя терминами этого силлогизма (модус Barbara) представляются тремя концентрическими кругами. Эта схема интерпретируется так: если все М (металлы) входят в объём Р (ковких тел), то с необходимостью S (железо) войдёт в объём Р (ковких тел), что и утверждается в заключении «Железо ковко».
Другой пример силлогизма:
Все рыбы (Р) не имеют перьев (М).
У всех птиц (S) есть перья (М).
Ни одна птица (S) не является рыбой (Р).
Отношения между терминами данного силлогизма (модус Cesare) представлены на рисунке. Он истолковывается так: если все S (птицы) входят в объём М (имеющие перья), а М не имеет ничего общего с Р (рыбы), то у S (птицы) нет ничего общего с Р (рыбы), что и утверждается в заключении.
Пример неправильного силлогизма:
Все тигры (М) – млекопитающие (Р).
Все тигры (М) – хищники (S).
Все хищники (S) – млекопитающие (Р).
Отношения между терминами данного силлогизма могут быть представлены двояко, как это показано на рисунке. И в первом, и во втором случаях все М (тигры) входят в объём Р (млекопитающие) и все М входят также в объём S (хищники). Это соответствует информации, содержащейся в двух посылках силлогизма. Но отношение между объёмами Р и S может быть двояким. Охватывая М, объём S может полностью входить в объём Р или объём S может лишь пересекаться с объёмом Р. В первом случае можно было бы сделать общее заключение «Все хищники – млекопитающие», но во втором случае правомерно только частное заключение «Некоторые хищники – млекопитающие». Информации, позволяющей сделать выбор между этими двумя вариантами, в посылках не содержится. Значит, мы не вправе делать общее заключение. Силлогизм не является правильным.
В силлогизме, как и во всяком дедуктивном умозаключении, в заключении не может содержаться информация, отсутствующая в посылках. Заключение только развёртывает информацию посылок, но не может привносить новую информацию, отсутствующую в них.
В обычных рассуждениях нередки силлогизмы, в которых не выражается явно одна из посылок или заключение. Такие силлогизмы называются энтимемами. Примеры энтимем: «Щедрость заслуживает похвалы, как и всякая добродетель», «Он – учёный, поэтому любопытство ему не чуждо», «Керосин – жидкость, поэтому он передаёт давление во все стороны равномерно» и т.п. В первом случае опущена меньшая посылка «Щедрость – это добродетель», во втором – большая посылка «Всякому учёному не чуждо любопытство», в третьем – опять-таки большая посылка «Всякая жидкость передаёт давление во все стороны равномерно».
Для оценки правильности рассуждения в энтимеме следует восстановить её в полный силлогизм.
Глава 10 Доказательство и опровержение
1. Понятие доказательства и его структура
Об И. Ньютоне рассказывают, что, будучи студентом, он начал изучение геометрии, как было принято в то время, с чтения «Геометрии» Евклида. Знакомясь с формулировками теорем, он видел, что они справедливы, и не изучал доказательства. Его удивляло, что люди затрачивают столько усилий, чтобы доказать совершенно очевидное.
Позднее Ньютон изменил своё мнение о необходимости доказательств в математике и других науках и хвалил Евклида как раз за безупречность и строгость его доказательств.
Невозможно переоценить значение доказательств в нашей жизни и особенно в науке. И тем не менее доказательства встречаются не так часто, как хотелось бы. К доказательствам прибегают все, но редко кто задумывается над тем, что означает «доказать», почему доказательство «доказывает», всякое ли утверждение можно доказать или опровергнуть, все ли нужно доказывать и т.п.
Наше представление о доказательстве как особой интеллектуальной операции формируется в процессе проведения конкретных доказательств. Изучая разные области знания, мы усваиваем и относящиеся к ним доказательства. На этой основе мы постепенно составляем – чаще всего незаметно для себя – общее интуитивное представление о доказательстве как таковом, его общей структуре, не зависящей от конкретного материала, о целях и смысле доказательства и т.д.
Изучение доказательства на конкретных его образцах и интересно, и полезно. Но также необходимо знакомство с основами логической теории доказательства, которая говорит о доказательствах безотносительно к области их применения. Практические навыки доказательства и интуитивное представление о нем достаточны для многих целей, но далеко не для всех. Практика и здесь, как обычно, нуждается в теории.
Логическая теория доказательства в основе своей проста и доступна, хотя её детализация требует специального символического языка и другой изощрённой техники современной логики.
Под доказательством в логике понимается процедура установления истинности некоторого утверждения путём приведения других утверждений, истинность которых уже известна и из которых с необходимостью вытекает первое.
В доказательстве различаются тезис – утверждение, которое нужно доказать, основание (аргументы) – те положения, с помощью которых доказывается тезис, и логическая связь между аргументами и тезисом. Понятие доказательства всегда предполагает, таким образом, указание посылок, на которые опирается тезис, и тех логических правил, по которым осуществляются преобразования утверждений в ходе доказательства.
К примеру, нужно доказать тезис «Все металлы проводят электрический ток». Подбираем в качестве аргументов утверждения, которые являются, во-первых, истинными и из которых, во-вторых, логически вытекает тезис. В качестве таких утверждений можно принять, в частности, следующие: «Все вещества, имеющие в своей кристаллической решётке свободные электроны, проводят электрический ток» и «Все металлы имеют в своей кристаллической решётке свободные электроны». Строим умозаключение:
Все вещества, имеющие в своей кристаллической решётке свободные электроны, проводят электрический ток.
Все металлы имеют в своей кристаллической решётке свободные электроны.
Все металлы проводят электрический ток.
Данное умозаключение является правильным (оно представляет собой категорический силлогизм), посылки его истинны; значит, умозаключение является доказательством исходного тезиса.
Доказательство – это правильное умозаключение с истинными посылками. Логическую основу каждого доказательства (его схему) составляет логический закон.
Доказательство – это всегда в определённом смысле принуждение.
Философ XVII в. Т. Гоббс до сорока лет не имел представления о геометрии. Впервые в жизни прочитав формулировку теоремы Пифагора, он воскликнул: «Боже, но это невозможно!» Но затем шаг за шагом он проследил все доказательство, убедился в его правильности и смирился. Ничего другого, собственно, и не оставалось.
Мы уверены, к примеру, что важными показателями богатства нашего языка являются его индивидуальность, стилистическая гибкость, умение обо всем говорить «своими словами». В таком случае мы должны признать также, что язык обезличенный, лишённый индивидуальности, основывающийся на чужих оборотах и выражениях и потому серый, бездушный и трафаретный, не может считаться богатым и полноценным.
Источником «принудительной силы» доказательств являются логические законы мышления, лежащие в их основе. Именно данные законы, действуя независимо от воли и желаний человека, заставляют в процессе доказательства с необходимостью принимать одни утверждения вслед за другими и отбрасывать то, что несовместимо с принятым.
Задача доказательства – исчерпывающе утвердить обоснованность доказываемого тезиса.
Раз в доказательстве речь идёт о полном подтверждении, связь между аргументами и тезисом должна носить дедуктивный характер.
По своей форме доказательство – дедуктивное умозаключение или цепочка таких умозаключений, ведущих от истинных посылок к доказываемому положению.
Обычно доказательство протекает в очень сокращённой форме.
Видя чистое небо, мы заключаем: «Погода будет хорошей». Это доказательство, но до предела сжатое. Опущено общее утверждение: «Всегда, когда небо чистое, погода будет хорошей». Опущена также посылка: «Небо чистое». Оба эти утверждения очевидны, их незачем произносить вслух.
Встретив идущего по улице человека, мы отмечаем: «Обычный прохожий». За этой констатацией опять-таки стоит целое рассуждение. Но оно настолько обычное и простое, что протекает почти неосознанно.
Писатель В.В.Вересаев приводит такой отзыв одного генерала о неудачном укреплении, которое построил его предшественник: «Я узнаю моего умного предшественника. Если человек большого ума задумает сделать глупость, то сделает такую, какой все дураки не выдумают». Это рассуждение – обычное доказательство, заключение которого опущено. Наши разговоры полны доказательств, но мы их почти не замечаем.
Старая латинская пословица говорит: «Доказательства ценятся по качеству, а не по количеству». В самом деле, дедукция из истины даёт только истину. Если найдены верные аргументы и из них дедуктивно выведено доказываемое положение, доказательство состоялось, и ничего более не требуется.
Нередко в понятие доказательства вкладывается более широкий смысл: под доказательством понимается любая процедура обоснования истинности тезиса, включающая как дедукцию, так и индуктивное рассуждение, ссылки на связь доказываемого положения с фактами, наблюдениями и т.д. Расширительное истолкование доказательства является обычным в гуманитарных науках. Оно встречается и в экспериментальных, опирающихся на наблюдения рассуждениях.
Как правило, широко понимается доказательство и в обычной жизни. Для подтверждения выдвинутой идеи активно привлекаются факты, типичные в определённом отношении явления и т.п. Дедукции в этом случае, конечно, нет, речь может идти только об индукции. Но тем не менее предлагаемое обоснование нередко называют доказательством.
Широкое употребление понятия «доказательство» само по себе не ведёт к недоразумениям. Но только при одном условии. Нужно постоянно иметь в виду, что индуктивное обобщение, переход от частных фактов к общим заключениям, даёт не достоверное, а лишь вероятное знание.
Определение доказательства включает два центральных понятия логики: понятие истины и понятие логического следования. Оба эти понятия не являются в достаточной мере ясным и, значит, определяемое через них понятие доказательства также не может быть отнесено к ясным.
Многие утверждения не являются ни истинными, ни ложными, т.е. лежат вне «категории истины». Оценки, нормы, советы, декларации, клятвы, обещания и т.п. не описывают каких-то ситуаций, а указывают, какими они должны быть, в каком направлении их нужно преобразовать. От описаний требуется, чтобы они соответствовали действительности и являлись истинными. Удачный совет, приказ и т.п. характеризуется как эффективный или целесообразный, но не как истинный. Высказывание «Вода кипит» истинно, если вода действительно кипит; команда же «Вскипятите воду!» может быть целесообразной, но не имеет отношения к истине. Очевидно, что оперируя выражениями, не имеющими истинностного значения, можно и нужно быть и логичным и доказательным. Встаёт, таким образом, вопрос о существенном расширении понятия доказательства, определяемого в терминах истины. Им должны охватываться не только описания, но и утверждения типа оценок или норм. Задача переопределения доказательства пока не решена ни логикой оценок ни деонтической (нормативной) логикой. Это делает понятие доказательства не вполне ясным по своему смыслу.
Не существует, далее, единого понятия логического следования. Логических систем, претендующих на определение этого понятия, в принципе бесконечно много. Ни одно из имеющихся в современной логике определений логического закона и логического следования не свободно от критики и от того, что принято называть «парадоксами логического следования».
Образцом доказательства, которому в той или иной мере стремятся следовать во всех науках, является математическое доказательство. Долгое время считалось, что оно представляет собой ясный и бесспорный процесс. В нашем веке отношение к математическому доказательству изменилось. Сами математики разбились на группировки, каждая из которых придерживается своего истолкования доказательства. Причиной этого послужило, прежде всего изменение представления о лежащих в основе доказательства логических принципах. Исчезла уверенность в их единственности и непогрешимости. Полемика по поводу математического доказательства показала, что нет критериев доказательства, не зависящих ни от времени, ни от того, что требуется доказать, ни от тех, кто использует критерий. Математическое доказательство является парадигмой доказательства вообще, но даже в математике доказательство не является абсолютным и окончательным.
2. Прямое и косвенное доказательство
Философ А.Шопенгауэр считал математику довольно интересной наукой, но не имеющей никаких приложений, в том числе и в физике. Он даже отвергал саму технику строгих математических доказательств. Шопенгауэр называл их мышеловками и приводил в качестве примера доказательство известной теоремы Пифагора. Оно является, конечно, точным: никто не может счесть его ложным. Но оно представляет собой совершенно искусственный способ рассуждения. Каждый шаг его убедителен, однако к концу доказательства возникает чувство, что вы попали в мышеловку. Математик вынуждает вас допустить справедливость теоремы, но вы не получаете никакого реального понимания. Это все равно, как если бы вас провели через лабиринт. Вы наконец выходите из лабиринта и говорите себе: «Да, я вышел, но не знаю, как здесь очутился».
Позиция Шопенгауэра, конечно, курьёз, но в ней есть момент, заслуживающий внимания. Нужно уметь проследить каждый шаг доказательства. Иначе его части лишатся связи, и оно может рассыпаться, как карточный домик. Но не менее важно понять доказательство в целом, как единую конструкцию, каждая часть которой необходима на своём месте. Как раз такого целостного понимания не хватало, по всей вероятности, Шопенгауэру.