Книга о самых невообразимых животных. Бестиарий XXI века - Каспар Хендерсон 13 стр.


Все труды веков, вся преданность, все вдохновение, вся полуденная яркость человеческого гения обречены на гибель в гигантском пожаре Солнечной системы; и сам храм достижений человека неизбежно будет погребен под развалинами Вселенной – если этот факт и нельзя назвать бесспорным, он уже практически не вызывает сомнений, так что всякая философия, отрицающая это, несостоятельна. Только на этом фундаменте правды, только на твердом основании несгибаемого отчаяния можно построить обиталище для души.

Рассел считал, что этого основания достаточно, чтобы достойно прожить жизнь. Пятьюдесятью годами позже это мнение все еще поддерживало его неукротимую деятельность: в частности, при создании документа, ставшего известным как манифест Рассела – Эйнштейна, в котором оспаривались направленные на всеобщее уничтожение политики сверхдержав в период холодной войны. Это образец гуманистической позиции, отличный пример понимания ценности «маленькой Земли», на которой мы живем, – бледно-голубой точки, как позже назвал ее Карл Саган – вместо поиска некоего невидимого трансцендентного.

Развитие науки, свидетелем которому стал Бертран Рассел, пролило новый свет на природу реальности, смягчив суровость второго закона. Во-первых, сегодня мы считаем, что Вселенная будет продолжать существовать намного дольше, чем это представлялось в конце XIX в.: по крайней мере еще несколько миллиардов, а не несколько миллионов лет. Во-вторых, все новые открытия биологии и смежных наук позволяют нам полнее оценить жизнь и не в последнюю очередь ее поразительную способность упорядочивать царящий в мире хаос. И это дает основания полагать, что жизнь располагает если не безграничной, то недооцениваемой способностью к продолжению. По словам самого Рассела (а для него это утверждение было почти мистическим), «мир полон магических вещей, которые терпеливо ждут, пока ум человека станет острее».

После неожиданного столкновения со смертью в самой середине своей жизни Тайлер Волк, эколог, занимающийся крупномасштабными земными процессами, попытался осознать собственную смертность и конечность мира. Его ответ на эти вопросы оказался довольно простым. На материальном уровне жизнь не может существовать без смерти: переработка органического вещества в биосфере позволяет ей быть в двести раз продуктивнее. И наши тела тоже должны стать почвой. На эмоциональном и духовном уровне главное – научиться принимать этот факт. По словам Уильяма Блейка: «Тот, кто целует радость, пока она летит, живет на восходе вечности».

Прежде чем вернуться к материальной стороне «одного длинного доказательства» Дарвина, стоит заметить, что процесс умирания может быть гениальным, как продемонстрировал Дэвид Юм, который сохранял юмор и проницательность до конца жизни. И даже на саму смерть, если верить писателю и фанатичному садоводу Карелу Чапеку, можно смотреть с определенным удовольствием: «После смерти садовод становится не бабочкой, опьяненной запахами цветов, а дождевым червяком, пробующим все прекрасные темные, азотистые и пикантные вкусы земли».

Можно верить в жизнь после смерти или не верить, но мы знаем точно: целая живая планария может вырасти всего из одной клетки, взятой из тела взрослого червя. Вот вам подтверждение того, что чудеса в жизни есть!

Гонодактилус – ротоногое с «генитальными пальцами»

Gonodactylus smithii

Тип: членистоногие

Подтип: ракообразные

Класс: высшие раки

Отряд: ротоногие или ракибогомолы

Охранный статус: не присвоен

Подлинное открытие не в том, чтобы обнаружить новые земли, но в том, чтобы видеть мир новыми глазами.

Марсель Пруст

У него самые быстрые гениталии на Западе, и он может размозжить ими вашу голову. Ударная волна при этом способна разорвать внутренности в клочья. К счастью для человека, Gonodactylus smithii, вид отряда ротоногих, размером не больше корнишона и охотится в основном на мелких улиток, рачков и устриц. И все-таки этот рак-богомол может сломать вам палец или даже руку, если вы окажетесь слишком близко к его норкам на дне тропических морей, и опытные дайверы предпочитают держаться подальше от этого рака, когда он проворно вытанцовывает по дну свои па.

Гонодактилус означает «гонадные пальцы», хотя на самом деле наросты, давшие этому виду название, являются не гениталиями, а конечностями. Вероятно, вид этих палкообразных конечностей, сложенных и тесно прижатых к туловищу, позабавил ученого, придумавшего название. Но на самом деле это далеко не шуточное оружие. Раки-богомолы могут наносить потрясающе сильные удары: за несколько секунд конечность развивает скорость, сравнимую со скоростью пули, – вероятно, самый быстрый удар среди животных, – а сила удара может достигать 1500 ньютонов – вероятно, самый мощный удар в пересчете на массу животного. Такой удар у рака-богомола получается благодаря «резинке» в основании конечности в форме гиперболического параболоида (то есть напоминающего по форме седло), очень популярной у архитекторов и инженеров формы из-за своей устойчивости к давлению. Движение конечности настолько быстро, что она создает вакуум в воде непосредственно за собой – эффект, известный как кавитация, – срабатывающий как второй удар, когда этот вакуум настигает жертву.

Обычно солнечный свет рассеивается, но при определенных условиях он может поляризоваться на плоскости. (Представьте себе веревку, прикрепленную одним концом к стене и колеблющуюся вверх-вниз, а не из стороны в сторону, – это дает представление о линейной поляризации.) Когда световая волна проходит через прозрачный объект, например прозрачное животное в океане, она может поляризоваться. Способность различать такой свет – важный навык, если ваш рацион составляют в основном маленькие прозрачные животные, так что он развился у достаточно большого числа животных. Круговая поляризация подразумевает, что световая волна распространяется по кругу, и именно такую поляризацию умеют различать ротоногие. Глаз гонодактилуса содержит специальные структурные единицы – омматидии со светочувствительными клетками, называемыми рабдомами, которые объединены в группы по восемь. Семь клеток находятся в цилиндре со специальной щелью, через которую может проходить поляризованная световая волна, если колебания происходят в необходимой плоскости. Восьмая клетка находится выше, и ее щель располагается под углом 45º по отношению к остальным, превращая световую волну с круговой поляризацией в волну, которую животное способно воспринимать.

Гонодактилус – идеальная машина-убийца – один из примерно 400 видов отряда ротоногих, который можно разделить на две группы. Одни, как гонодактилусы, забивают свою добычу, вторые – пронзают жертв острыми кончиками своих передних конечностей, как копьем. Ротоногие существуют практически в современном обличье, за исключением нескольких незначительных изменений, уже на протяжении 400 млн лет. Но выживание этого отряда обеспечивается еще одним свойством, даже более любопытным, чем их способность наносить столь потрясающие удары. Гонодактилус – обладатель самых сложных глаз в животном мире.

Каждый глаз рака-богомола располагается на ножке, способной двигаться независимо от второго, и состоит из 10 000 омматидий (структурная единица фасеточного глаза). У некоторых стрекоз, обладающих отменным зрением, омматидий примерно в три раза больше, но раки-богомолы более эффективно используют свои глаза и уникальны как минимум в трех аспектах. Во-первых, у них тончайший механизм различения цветов. Большинство животных, если они вообще различают цвета, имеют от двух до четырех типов рецепторов (у людей их обычно три, у некоторых женщин – четыре). У раков-богомолов таких рецепторов 8–12, что позволяет им распознавать более тонкие различия цветовых оттенков, чем любым другим обитателям рифов{21}. Во-вторых, каждый глаз разделен на три части, каждая из которых отражает свой ракурс и участвует в создании общей картины. Каждый глаз как будто снабжен независимыми тринокулярами, что позволяет получить максимально четкое представление о глубине и расстоянии. В-третьих, ротоногие способны видеть циркулярно поляризованный свет. Эта уникальная способность раков-богомолов была открыта только в 2008 г. Таким свойством не обладает ни одно другое животное, и его можно сравнить с превосходством стерео над моно в информационных технологиях. Это, как отмечает зоолог Майерс, очень мощное преимущество; раки-богомолы живут в мире, визуальные детали которого недоступны человеческому воображению, и способны воспринимать свойства света, выходящие за рамки наших представлений.

В полном опасностей и конкурентов мире, где обитают ротоногие, подобные глаза – отличный инструмент, который помогает ротоногим находить и отслеживать объект, а также наносить удары с огромной скоростью и точностью. Но ротоногие – это не просто миниатюрная версия чудовища Гренделя. Они используют свое удивительное зрение не только для того, чтобы найти и убить добычу, а потом наесться досыта. Глаза нужны ротоногим еще и для исполнения различных функций социальной жизни, которая, как и у человека, во многом определяется территориальными притязаниями, ритуальными сражениями и искусством ухаживания и романтических отношений. Ротоногие выражают настроение, намерения, а может быть, и многое другое с помощью незначительных изменений позы, а также впечатляющей окраски (у многих видов есть два темных пятна, похожих на пару гигантских глаз).

В полном опасностей и конкурентов мире, где обитают ротоногие, подобные глаза – отличный инструмент, который помогает ротоногим находить и отслеживать объект, а также наносить удары с огромной скоростью и точностью. Но ротоногие – это не просто миниатюрная версия чудовища Гренделя. Они используют свое удивительное зрение не только для того, чтобы найти и убить добычу, а потом наесться досыта. Глаза нужны ротоногим еще и для исполнения различных функций социальной жизни, которая, как и у человека, во многом определяется территориальными притязаниями, ритуальными сражениями и искусством ухаживания и романтических отношений. Ротоногие выражают настроение, намерения, а может быть, и многое другое с помощью незначительных изменений позы, а также впечатляющей окраски (у многих видов есть два темных пятна, похожих на пару гигантских глаз).

Гонодактилус имеет аппозиционные стебельчатые глаза, состоящие из дорсальной и вентральной полусфер, разделенных центральной полосой увеличенных омматидий, имеющих особую структуру (обозначенных на врезке темными изогнутыми линиями). С – электронный микроснимок продольного разреза этой центральной полосы. Белая шкала равна 1 микрометру (одна тысячная миллиметра)

Означают ли удивительные способности восприятия и сложное поведение ротоногих (и других членистоногих), что они обладают интеллектом? Такое предположение может показаться некоторым людям странным и даже отталкивающим. Мы еще как-то можем принять мысль о разумном головоногом – пусть в шутку, как это было в случае с осьминогом Паулем, ставшим очень популярным благодаря своему «дару предвидения» во время Кубка мира по футболу в 2010 г. Мы достаточно спокойно можем допустить родство с животными, глаза которых напоминают человеческие (см. главу 15). Но мыслящее членистоногое – для многих это уже слишком. Сложные глаза заставляют нас воспринимать ротоногих как нечто инопланетное или механическое, и, кроме того, у них очевидно слишком маленький мозг и ганглии. Но, что есть, то есть – раки-богомолы очень хитрые создания.

Рассуждая о ментальных способностях человека и животных, Чарльз Дарвин (1870) удивлялся строению церебральных ганглий («мозга») муравьев, имеющих много общего с ротоногими: «Очевидно, что удивительная ментальная активность может осуществляться при крайне маленькой общей массе нервной материи. Так, общеизвестны удивительные и разнообразные инстинкты муравьев, их ментальные способности и привязанности. При этом их церебральные ганглии размером не больше четверти головки небольшой булавки. С этой точки зрения мозг муравья – один из самых чудесных объектов в мире, может быть, даже удивительнее, чем мозг человека».

Скорость света превышает все известные нам скорости. Но ведь ни свет, ни жизнь никуда не торопятся. «Солнце, – писал Галилей, – хотя вокруг него вращаются и от него зависят все планеты, находит время на то, чтобы помочь вызреть грозди винограда, как будто в целом мире нет для Солнца более важной работы». Как минимум 2,5 млрд лет (а может быть, и более 3 млрд) солнечный свет поддерживает зеленую растительность на Земле. Сначала бактерии, затем водоросли, а позже и другие растения научились получать энергию из солнечного света и производить сахара из углекислого газа. В этом процессе они вырабатывали кислород, который со временем изменил океан, сушу и небо. Многие ранние формы жизни умели определять направление, в котором находится источник света, а иногда его интенсивность и длину волны. Но в течение большей части истории существования жизни на Земле (четыре пятых истории жизни на Земле) мир оставался слепым. Первые глазные пятна – маленькие скопления фоточувствительных белков, дающих электрохимические импульсы – вероятно, появились менее 600 млн лет назад.

Конечно, глазные (светочувствительные) пятна не обеспечивают животное энергией, но они помогают своему хозяину – вначале это, скорее всего, были одноклеточные организмы – чувствовать суточные ритмы, находить более светлые (или более темные) места, где больше вероятность найти добычу (или встретить хищника), а также места, где можно получить больше солнечного света. И такие способности, даже если на первый взгляд они кажутся довольно скромными, дают значительное преимущество над теми организмами, у которых глазных пятен нет. Конечно, различия между глазным пятном, способным просто воспринимать свет, и настоящим глазом, формирующим четкое изображение, очевидны. Сложно даже представить, как глаз мог развиться из глазного пятна без вмешательства какого-нибудь инженера. Научные данные, однако, убедительно демонстрируют, что незначительные изменения от поколения к поколению, позволяющие постепенно совершенствовать способность собирать информацию о внешнем мире (например, более четкое определение источника света), помогают организму выжить, а значит, во многих случаях проходят естественный отбор. Совсем необязательно с самого начала «держать в голове» цель получить полностью сформированный глаз с фокусирующим хрусталиком. Можно предположить, что глаз развился из самых простых светочувствительных пятен всего за 400 000 поколений, то есть менее чем за полмиллиона лет.

Возможно, первые светочувствительные пятна появились у жгутиконосцев, похожих на современных, например, на эвглену зеленую (Euglena gracilis – разновидность динофитовых водорослей), глазные пятна позволяют ей определять наличие необходимого для фотосинтеза света. Оказываясь в недостаточно освещенной среде обитания, эвглена может питаться как обычное животное.

Обладатель самых маленьких глаз на планете – жгутиконосец эритропсидиум (Erythropsidium) – всего 50–70 мкм в поперечнике, то есть меньше диаметра человеческого волоса.

Несколько больше вопросов вызывает процесс появления глаз у многоклеточных животных. Неизвестно, как выглядели эти животные. (Очень необычную идею предложила Линн Маргулис, биолог и одна из создателей гипотезы Геи: в начале кембрия или незадолго до того некое многоклеточное животное съело жгутиконосца с глазными пятнами и встроило эти пятна в свой организм!). Точно можно сказать лишь, что все многообразие глаз современного животного мира имеет общее генетическое происхождение: ген, отвечающий за развитие глаза у мыши, Pax6, можно пересадить эмбриону плодовой мушки, и эмбрион сформирует глаз в месте пересадки.

Появление гена Pax6 предшествует появлению глаз и даже нервной системы; очень похожие гены были обнаружены у губок.

Первые обнаруженные на данный момент ископаемые с глазами, способными формировать четкие образы, датируются периодом примерно 543 млн лет назад{22}. Это сложные глаза, похожие на глаза современных насекомых и ракообразных, и принадлежали они трилобитам – классу членистоногих, напоминавших мечехвоста или гигантскую мокрицу. Хрусталики – из кристаллов кальцита, практически идентичного материалу, формировавшему наружный скелет животного, только прозрачные – были твердыми и потому не могли менять фокус, подобно мягкому хрусталику в глазах человека или осьминога. Но они обеспечивали достаточную глубину резкости, так что изображение объектов на довольно большом диапазоне расстояний было довольно четким.

Многие животные кембрийского периода были прожорливы, так что преимущества развитого глаза очевидны: они давали возможность видеть как добычу, так и преследователя. Только у шести из 36 типов животных появились глаза, способные формировать изображения: это членистоногие (ракообразные, насекомые, пауки), стрекающие (в частности, некоторые медузы), моллюски (улитки, осьминоги и др.), кольчатые черви (нереиды), онихофоры (бархатные черви) и хордовые (от миксин до человека) – именно представители этих типов играют ведущую роль в своих экосистемах, и именно им в основном удалось дожить до настоящего времени.

Пожалуй, ни одно животное сегодня не выглядит так странно, как опабиния – представитель кембрийской фауны. У нее пять глаз на стебельках и хоботок с острейшими зубами. Но и в наши дни встречаются чудеса, которые заслуживают внимания. Возьмем, например, стрекающих – тип, включающий кораллы и медуз: животные с радиальной симметрией, не имеющие мозга в нашем представлении и всего с одним отверстием, служащим им одновременно и ртом, и анусом – сложно предположить, чтобы у такого организма сформировались глаза. Но даже у коралловых полипов есть, пусть и очень ограниченная, способность зрительного восприятия. Глазные пятна позволяют им отслеживать фазы луны, чтобы в полнолуние (при правильной температуре воды) извергнуть целый «вихрь» семени и яиц. Такое происходит на Большом Барьерном рифе у побережья Австралии обычно раз в году, и, наверное, это самая отвязная оргия в мире. Существует как минимум один класс стрекающих – кубомедузы, – некоторые представители которого имеют хорошо развитые глаза. Так, у кубомедузы (Chironex fleckeri) целых восемь глаз, со сложными хрусталиками, сетчаткой, радужной оболочкой и роговицей, а в дополнение еще восемь глаз-щелок и восемь глазных пятен, так что туловище этого животного демонстрирует все стадии развития глаза. Все три типа глаз равномерно распределены по колоколу, так что кубомедуза имеет полный круговой обзор. Люди используют как минимум треть коры головного мозга для обработки информации, получаемый нашими (всего-то двумя!) глазами. Ранее считалось, что Chironex и другие виды кубомедуз имеют простую нейронную сеть, но сейчас ученые начинают понимать, что их нервная система представлена сложной архитектурой нервных узлов и способна обрабатывать информацию, предоставленную восьмью глазами (или двадцатью четырьмя, если считать глазные пятна). Представить, как кубомедузы воспринимают эту информацию, сложнее, чем понять дзэн-буддийский коан. Но им удается совершать сложные (по меркам кубомедуз) действия: например, возвращаться к корням мангрового дерева, у которых они нашли убежище, или преследовать добычу (а не просто ждать, пока случайно натолкнутся на что-нибудь съедобное) и совокупляться способами, которые могут вогнать в краску фанатов «Камасутры».

Назад Дальше