Квантовая физика не столько дает ответы на старые вопросы, сколько подвергает сомнению те вопросы, которые мы имеем право задавать.
Квантовые ковры
Вот к чему сводится суть открытия Гейзенберга. Возьмем одну из частиц внутри моего куска урана. Если мы знаем, что эта частица пребывает в состоянии покоя – не движется, – то оказывается, что мы не можем знать, где она находится. То есть если проверить ее местоположение, есть шанс обнаружить ее в любой точке Вселенной. Напротив, если попытаться точно определить, где эта частица находится, мы внезапно теряем возможность определения того, как она движется. Частица, которая казалась нам покоящейся, неожиданно оказывается движущейся в произвольном направлении.
Эта идея кажется абсолютно безумной. Подбросив игральную кость в воздух и внимательно следя за ее падением на стол, я не ожидаю, что мое знание положения кости внезапно заставит ее улететь в совершенно новом направлении. Но такое интуитивное представление справедливо только в отношении объектов с большой массой. Если масса мала – например в случае электрона, – то именно так все и происходит. Если определить положение электрона с точностью до радиуса атома, его скорость может изменяться на величину, составляющую до 1000 км/с, причем в любом направлении.
Это похоже на попытки расстелить некий странный квантовый ковер: каждый раз, как мы фиксируем край ковра, соответствующий положению, его импульсный край задирается; стоит нам зафиксировать импульсный край, как другой край ковра уходит со своего места.
Чтобы разобраться в этой упругой связи между положением и импульсом, вернемся к нашему щелевому экрану. Мы изучали странное поведение частицы, направленной на экран, в котором прорезаны две щели. А вот странные отношения между положением и импульсом проявляются в поведении частицы, пролетающей через одиночную щель. Мы уже отмечали, что при пролете частиц через одиночную щель возникает некоторая диффузия. А почему, собственно, один электрон, пролетающий через щель, вообще должен отклоняться? Если электрон – точечная частица, почему же он не пролетает прямо через щель? Как можно объяснить распределение его возможных положений после пролета через щель? Наблюдаемую в этом случае диффузию объясняет именно балансирование между знанием положения и знанием импульса.
Установим источник электронов на большом расстоянии от экрана: тогда, если электрон пролетает через щель, он заведомо не может сместиться в направлении, перпендикулярном щели. Это означает, что, если частица попадает в щель, мы знаем, что ее импульс в этом направлении равен нулю. То есть его значение нам известно точно.
Если считать электрон точечной частицей, то он либо пролетает через щель, не задевая экрана, либо не пролетает. Если он пролетает через щель, мы получаем информацию о его положении, точность которой определяется шириной щели. То есть теперь можно предсказать, в какое место детектора он попадет. Поскольку до попадания электрона в щель импульс в направлении, перпендикулярном ей, был нулевым, электрон должен попасть в участок детектора, ширина которого точно равна ширине щели. Почему же при пропускании через щель все большего числа электронов мы получаем ту же диффузионную картину, которая возникает при попадании волн на пластину детектора? Почему не все электроны прилетают на участок, ширина которого равна ширине щели?
Принцип неопределенности Гейзенберга утверждает, что любое измерение, касающееся точного определения положения электрона, порождает неопределенность значения его импульса. Так, например, если электрон пролетел через щель, то его положение известно нам с точностью, определенной шириной щели. По мере уменьшения ширины щели уменьшается и погрешность определения положения. Но диффузионный рисунок становится при этом все шире и шире. Почему? Потому, что это влияет на величину импульса. Если при подлете к щели импульс в направлении, перпендикулярном ей, был равен нулю, то после вылета электрона из щели его положение определено более точно, а его импульс становится неопределенным. Мы зафиксировали край квантового ковра, отвечающий за положение, и его импульсный край от этого задрался.
Очень странная ситуация. Более того, нельзя вычислить заранее, каким именно будет воздействие на импульс. Его можно только измерить впоследствии. Нам доступен только диапазон возможных значений, в пределах которого будет найден импульс при наблюдении. К тому же, если повторить тот же опыт, оказывается, что импульс не определяется условиями эксперимента. Для определения возможного значения импульса имеется только вероятностный механизм.
Численное выражение неопределенности
Принцип неопределенности Гейзенберга дает не просто расплывчатое утверждение общего характера, но численную меру потери знания. Если положение электрона известно с высокой точностью, то его импульс в момент вылета из щели не будет точно равен нулю, а может статистически варьироваться вокруг равного нулю среднего значения. Мы не можем знать, какое значение мы получим при измерении импульса, так как оно все еще неопределенно, но знаем, что возможные значения импульса должны быть статистически распределены по обе стороны от нулевого среднего значения. Можно измерить ширину такого распределения, которую называют стандартным отклонением импульса и обозначают Δp. Эта величина является статистической мерой разброса возможных значений. Чем больше этот разброс, тем больше значение Δp и тем более неопределенно значение импульса.
После того как в 1927 г. появилась исходная статья Гейзенберга, описывающая эту странную обратную связь между знанием положения и знанием импульса, Эрл Кеннард, а позднее Говард Робертсон нашли математическое выражение такого балансирования знаний. Если стандартное отклонение разброса возможных положений равно Δx, а стандартное отклонение разброса возможных значений импульса – Δp, то эти две величины удовлетворяют следующему неравенству:
где h – постоянная Планка, то же число, которое встречалось нам в объяснении энергии фотона. Эта формула утверждает, что если погрешность измерения положения, равная Δx, уменьшается, то для сохранения справедливости соотношения должна увеличиться погрешность измерения импульса, равная Δp. Математическим следствием из квантовой физики является тот факт, что чем точнее полученное знание о положении частицы, тем более возрастает диапазон ее возможного распределения импульса. Именно это и происходит при пролете электрона через одиночную щель.
Взаимосвязанная природа этих двух свойств вытекает из значимости порядка, в котором проводятся измерения. Акты измерения положения и импульса описываются математически двумя операциями, которые, будучи произведены в разных последовательностях, дают разные результаты. Эту идею можно проиллюстрировать при помощи все той же игральной кости. Предположим, кость лежит на столе так, что верхней оказывается грань с единицей, как показано на рисунке. Повернем кубик на четверть оборота вокруг вертикальной оси, проходящей через верхнюю грань, а затем – на четверть оборота вокруг горизонтальной оси, проходящей вокруг одной из боковых граней. Теперь на верхней грани оказалась пятерка. Но если вернуть кость в исходное положение и повторить те же движения, но в обратном порядке, результат получится иным. Теперь верхней оказывается грань с четверкой.
Любые измерения, обладающие этим свойством – что порядок, в котором производят соответствующие им математические операции, имеет значение, – порождают принцип неопределенности. Он попросту является математическим следствием свойства, называемого некоммутативностью.
Именно математика, лежащая в основе квантовой физики, в значительной степени ответственна за ее противоречие здравому смыслу. Когда я зарываюсь в книги и статьи по квантовой физике, мне кажется, что я вхожу в лабиринт. Перед началом путешествия мне казалось, что я знаю, где нахожусь. Затем я стал прокладывать свой логический маршрут через изгибы и повороты лабиринта, используя свои математические навыки. Мне приходится полагаться на математику, потому что стены лабиринта так высоки, что не позволяют мне даже догадываться о том, какой мир лежит за ними. Но когда математика выводит меня на другую сторону и я пытаюсь разобраться, куда я попал, окружающая меня местность выглядит совершенно непохожей на то место, с которого я начал свой путь.
С математикой-то все в порядке: трудность представляет интерпретация результатов, которые она выдает. Создается такое впечатление, что у меня нет языка, который позволил бы перевести то, что эта математика сообщает нам о реальности. Может быть, мои затруднения не реальны, а порождены ограничениями, которые накладывают старый язык и старые теории. Квантовая физика – это кроличья нора, и, упав в нее, мы должны кардинально изменить свою точку зрения и сформулировать новый язык, который позволил бы нам уверенно путешествовать по этому зазеркальному миру. И, нравится нам это или нет, этот язык – математика.
Но можно ли доверять математике? Выведенное из теории поведение, предсказанное математикой принципа неопределенности Гейзенберга, было подтверждено экспериментально. Американский физик Клиффорд Шалл описывает в статье, опубликованной в 1969 г., результаты обстрела нейтронами щели с уменьшающейся шириной. Как и предсказывала теория, увеличение точности определения положения нейтронов, обеспечиваемое уменьшением ширины щели, приводило к росту разброса возможных значений их импульса. И, когда нейтроны долетали до пластины детектора, наблюдалось распределение, стандартное отклонение которого точно соответствовало предсказаниям уравнения принципа неопределенности Гейзенберга.
Простой акт более точного определения положения нейтрона привел к потенциальному изменению его импульса. Принцип неопределенности Гейзенберга выражает в виде уравнения тот факт, что мы никогда не сможем знать всего. Увеличение знания неизбежно достается нам ценой соответствующего увеличения незнания.
Получая более точную информацию об одних величинах, мы теряем определенность других. Но такая неопределенность может иметь неожиданные последствия. Если заключить электрон внутри очень маленькой коробочки, положение такого электрона будет известно с высокой точностью. Но в результате этого значения его импульсы будут распределены в чрезвычайно широком диапазоне. При попытке измерения импульса происходит редукция волновой функции, в результате которой импульс может получить одно из множества разных значений.
Можно предположить, что, измерив импульс, мы сможем узнать и положение, и импульс. Но на самом деле такое измерение делает положение неопределенным. Места возможного нахождения электрона распределяются по пространству в такой степени, что мы получаем так называемый квантовый туннельный эффект, и в результате частица, которую мы считали заключенной в коробке, неожиданно оказывается вне ее. Именно этот эффект является причиной испускания альфа-частиц ураном, лежащим у меня на столе.
Опыт Клиффорда Шалла подтвердил, что уменьшение ширины щели приводит к увеличению статистического разброса положений нейтронов
Альфа-частица является частью ядра урана и состоит из двух протонов и двух нейтронов. Ядро как бы представляет собой маленькую коробочку, в которой содержатся альфа-частицы. В общем случае такие частицы не имеют энергии, достаточной для преодоления сил, удерживающих их в ядре. Поскольку их скорость и, следовательно, импульс ограничены таким образом, их импульс известен нам с высокой точностью. Но тогда, в соответствии с принципом неопределенности Гейзенберга, положение этих частиц определено не столь точно. Существует даже вероятность того, что это положение может находиться вне ядра и в таком случае частицы могут вылетать из него. Такая неопределенность положения и является причиной излучения урана.
Пределы знания на малом масштабе
Принцип неопределенности не только объясняет непредсказуемость моей банки урана, но и устанавливает пределы знания, которое я могу получить, забираясь все глубже и глубже внутрь игральной кости, чтобы посмотреть, что там происходит.
Если пытаться точно измерить координаты одного из электронов внутри кости, то за уменьшение погрешности определения координат придется заплатить соответствующей неопределенностью импульса и, следовательно, энергии. Соотношение неопределенности Гейзенберга дает математическое выражение этого баланса. Но есть и еще одно обстоятельство. Поскольку энергия и масса связаны уравнением Эйнштейна E = mc2, то при достаточно высокой энергии может произойти рождение новых частиц. Затруднение состоит в том, что, если попытки определения положения частицы приводят к образованию новых частиц, это существенно усложняет исследование положения исходной частицы. Характерный масштаб, на котором возникает такое осложнение, называется комптоновской длиной волны частицы. Для электрона она составляет около 4 · 10–13 м.
При переходе к еще меньшим расстояниям неопределенность ситуации становится все сильнее. В некоторой точке неопределенность энергии возрастает настолько, что соответствующая масса становится достаточно большой для возникновения черной дыры. Как мы увидим на пятом «рубеже», черная дыра по самой своей природе удерживает в себе любую информацию в пределах определенного расстояния от центра дыры и препятствует ее высвобождению.
Это означает, что из принципа неопределенности вытекает существование встроенного предела, ограничивающего возможности исследования природы. Оказывается, что начиная с некоторого масштаба мы не можем получить дальнейшего доступа вглубь происходящего. Масштаб этот очень мал. Он составляет порядка 1,616 · 10–35 м и называется планковской длиной. Это чрезвычайно мало. Если увеличить точку, стоящую в конце этого предложения, до размеров наблюдаемой Вселенной, то планковская длина будет сопоставима с размерами точки до такого увеличения.
На предыдущем «рубеже» мы дошли до точки, после которой не могли далее делить материю; сейчас мы дошли до точки, после которой не можем далее делить пространство. Бред какой-то. Почему мы не можем говорить о точке, расположенной посередине между двумя точками, разделенными планковской длиной? Это вполне возможно с математической точки зрения, но, по-видимому, не с физической. Физика утверждает, что различить такие точки невозможно.
Из этого следует, что пространство на этом масштабе выглядит разрозненным, зернистым, дискретным – а вовсе не непрерывным, как полагал Ньютон. В таком представлении пространство оказывается скорее цифровым, чем аналоговым. А из этого, в свою очередь, следует, что фракталы, о которых мы говорили на первом «рубеже», не могут иметь какой-либо физической реальности в квантовой физике. Фрактал должен обладать бесконечной сложностью на любом масштабе, но квантовая физика останавливает увеличение масштаба на уровне планковской длины. Значит ли это, что фракталы первого «рубежа» существуют только в математическом воображении? Кажется, что квантовая физика и теория хаоса несовместимы друг с другом. Возможно, квантовая физика способна подавлять хаотические системы.
Следует оговориться, что такая невозможность проникнуть за планковскую длину существует в современной теории. Именно на этом масштабе перестают как следует работать квантовая физика и общая теория относительности. Нам нужна новая теория, и именно с этим связаны все те усилия, которые прилагают к разработке квантовой гравитации и теории струн. Например, в теории струн частицы представляют собой не точки, а конечные струны, длина которых имеет порядок планковской длины, причем разные частицы вибрируют с разной частотой. Существуют ли действующие на таком масштабе правила, которые позволяли бы извлекать информацию на еще более мелких масштабах?
Наблюдение есть творение
Принцип неопределенности неоднократно пытались представить следствием влияния на систему акта наблюдения. Чтобы узнать, где находится частица, на нее нужно направить фотон, который сталкивается с частицей и передает ей импульс неизвестной величины. Таким объяснениям не следует доверять. Они привлекательны, но обманчивы. В приведенном выше примере пролета электрона через одиночную щель для изменения импульса электрона не требуется никаких фотонов. Оно происходит исключительно в результате пролета электрона через щель, который дает нам новую информацию о положении этой частицы, а это вызывает соответствующую потерю знания ее импульса. Никакого непосредственного взаимодействия, толкающего частицу в ту или иную сторону, тут нет.
Такое обманчивое описание столкновения частицы со световыми фотонами, по-видимому, восходит к исходной статье Гейзенберга. Он должен был включить в нее это описание, чтобы убедить скептически настроенных редакторов напечатать его статью.
На самом деле принцип неопределенности Гейзенберга ставит под сомнение смысл высказывания об одновременном наличии у электрона положения и импульса. Выражений вроде «знать положение и импульс частицы» следует избегать – они не имеют осмысленного эмпирического содержания.
Возможно, принцип неопределенности представляет собой нечто большее, чем просто выражение того, чего мы не можем знать. Он выражает скорее пределы определения некоей концепции. В этом смысле он согласуется с описанием электрона при помощи волновой функции, которое вообще не предполагает, что электрон имеет какое-либо точное положение в пространстве до наблюдения. Сам Гейзенберг сформулировал следующую точку зрения на головоломку о том, что представляет собой реальность:
Я считаю, что возникновение классической «траектории» можно четко определить следующим образом: «траектория» возникает только благодаря тому, что мы ее наблюдаем[63].