О том, чего мы не можем знать. Путешествие к рубежам знаний - Маркус Сотой 18 стр.


Более того, получается, что действия, осуществляемые в настоящем, способны изменить прошлое. Узнать, через какую именно щель пролетел электрон, можно спустя долгое время после прохождения им экрана. В момент, непосредственно предшествующий попаданию электрона в пластину детектора, прямо перед электроном можно поставить наблюдательное устройство. Назовем такое устройство «щелевым наблюдателем».

Предположим, что наш опыт с двойной щелью поставлен в космическом масштабе. Поставим на одном краю Вселенной источник электронов и расположим прямо перед ним экран с двойной щелью. Поместим пластину детектора на другом краю Вселенной. В такой конфигурации электрону потребуется много лет, чтобы пересечь все это пространство и наконец попасть в пластину. Поэтому когда электрон пролетает через экран с двойной щелью, он не знает, будем ли мы наблюдать его при помощи нашего «щелевого наблюдателя».

Решение об установке на пути частицы «щелевого наблюдателя», принятое в 2016 г. н. э., может изменить поведение частицы в 2000 г. до н. э.

Если мы все-таки используем «щелевой наблюдатель» много лет спустя, это будет означать, что за много лет до того электрон должен был пролететь через ту или другую щель. Но если мы не используем «щелевой наблюдатель», то много лет назад электрон должен был пролететь через обе щели. Странно, не правда ли? То, что мы делаем в начале XXI в., может изменить то, что случилось тысячи лет назад, когда этот электрон начинал свое путешествие. Создается впечатление, что существует не только множественное будущее, но и множественное прошлое, и акт наблюдения, произведенный в настоящем, может определить, что произошло в прошлом. Квантовая физика не только ставит под вопрос возможность познания будущего, но и заставляет усомниться в возможности действительного знания прошлого. Прошлое также представляется в виде суперпозиции возможностей, которые кристаллизуются только в случае наблюдения.

Расщепление личности

С моей точки зрения, интересная – и часто упускаемая из виду – особенность квантовой физики заключается в том, что вплоть до момента наблюдения она полностью детерминистична. Природа волнового уравнения, которое описывает электрон, пролетающий через щель, не вызывает никаких вопросов. Когда в 1926 г. Шредингер предложил свою теорию, он сформулировал дифференциальное уравнение, дающее полностью детерминистическое предсказание развития волновой функции. Волновое уравнение Шредингера в некотором смысле не менее детерминистично, чем уравнения движения Ньютона.

Вероятностные свойства и неопределенность возникают при попытке наблюдения частицы и извлечения классической информации. В высшей степени неклассическое и странное новое свойство заключается в этом разрывном переходе, по-видимому происходящем при «наблюдении» волны. Детерминизм внезапно исчезает, оставляя нам электрон, случайным образом расположенный в какой-то точке пространства. На большом масштабе такая случайность описывается информацией, содержащейся в волновой функции, но ученые пока не обнаружили механизма, который позволил бы определить в каждом индивидуальном случае будущее расположение электрона в конкретном эксперименте. Так ли это на самом деле? Действительно ли мы никогда не сможем определить положение электрона до наблюдения?

Когда мы производим наблюдение или измерение, происходит странный скачок, который привязывает частицу к одному определенному набору координат. Но немедленно после наблюдения эволюцию частицы начинает описывать другая волновая функция – и это положение сохраняется до следующего наблюдения и следующего скачка. Шредингеру чрезвычайно не нравились эти прерывистые изменения поведения: «Если нельзя избавиться от этих проклятых квантовых скачков, то я жалею, что вообще связался с квантовой теорией»[58].

Тут важно не переборщить с оценкой роли человека. Можно предположить, что червяки тоже могут вызывать редукцию волновой функции. И измерения могут производить не только живые существа. На другом конце потенциально безжизненной Вселенной существуют частицы, взаимодействующие с неодушевленными объектами, и в результате такого взаимодействия волновая функция редуцируется для принятия решения о свойствах частицы. Такое взаимодействие является измерением ничуть не меньше, чем наши экспериментальные исследования в лаборатории. Вселенная заполнена излучением, которое освещает все, что оно встречает на своем пути. Может быть, именно поэтому Вселенная в целом кажется классической, а не пребывающей в постоянном состоянии неопределенности? Это предположение связано с концепцией, которую физики называют декогеренцией.

Мне очень трудно уместить в голове идею о том, что наблюдение становится точкой раздела между детерминистическим электроном, описываемым волновой функцией, и электроном, внезапно получающим точное, но абсолютно случайно определенное местоположение. Вся эта история кажется совершенно безумной. Тем не менее нельзя не признать, что она успешно работает в качестве инструмента для вычислений. Рассказывают, что физик Дэвид Мермин говорил тем, кого, как и меня, беспокоила такая неизвестность, «заткнитесь и считайте». По тому же принципу теория вероятностей применяется к броску игральной кости. Хотя движением кости управляют уравнения Ньютона, лучшим средством для вычисления ее возможного поведения остается теория вероятностей.

Но даже и заткнувшись я не могу избавиться от ощущения резонности таких возражений. Приборы, которые я использую для измерений, представляют собой физическую систему, состоящую из частиц, которые точно так же подчиняются законам квантовой физики, как и электрон, который я пытаюсь наблюдать. И сам я тоже! Я – всего лишь скопление частиц, подчиняющихся квантовым законам. Ведь любой наблюдатель, будь то фотопластинка или человек, является частью мира квантовой физики и тоже описывается волновой функцией. Взаимодействие между волновой функцией электрона и наблюдателем тоже должно описываться волной. В конце концов, в чем состоит «наблюдение» или «измерение»?

А если и наблюдатель, и частицы, пролетающие через щели, описываются волновыми функциями, то не может ли все быть детерминированным? Случайность внезапно исчезает. Почему же физики довольствуются заявлением о том, что акт наблюдения редуцирует волновую функцию, если на самом деле тут действует сверхфункция, описывающая всех участников процесса – и электрон, и приборы, и исследователя? Где проходит граница между квантовым миром вероятности и классическим миром определенности? Такое двойственное видение микроскопического квантового мира и макроскопического мира выглядит несколько подозрительно. Наверняка же можно описать все вместе неким волновым уравнением. Все это в высшей степени неудовлетворительно, но, по правде говоря, большинство физиков следуют совету Мермина и смиряются с таким положением вещей. Мой коллега Филип Канделас рассказывает, как один многообещающий студент, на которого все возлагали большие надежды, однажды вдруг пропал из виду. Когда Канделас поинтересовался, что с ним случилось, он узнал причину его исчезновения. Семейные обстоятельства? Болезнь? Долги? Ни то, ни другое, ни третье. «Он пытался понять квантовую механику».

Я, наверное, пренебрег советом, который Фейнман давал тем, кто подобно мне пытается добиться посвящения в квантовые тайны: «Если сможете, не мучайте себя вопросом “Но как же так может быть?”, ибо в противном случае вы зайдете в тупик, из которого еще никто не выбирался. Никто не знает, как же так может быть».

Тем не менее такую, по-видимому, встроенную в систему неопределенность пытались преодолеть несколькими разными способами. Один из них сводится к гипотезе, согласно которой в точке наблюдения реальность разделяется на суперпозицию разных реальностей. В каждой из них фотон или электрон имеет разные положения, так что волна в некотором смысле не редуцируется, но сохраняется и описывает развитие событий во всех этих разных реальностях. Однако, когда в игру вступает сознание, мы оказываемся заперты в одной из таких реальностей и не имеем доступа ко всем остальным, в которых фотон или электрон обнаруживаются в какой-либо другой точке фотопластинки.

Эта увлекательная попытка разобраться в сущности физики, известная под названием «многомировой интерпретации», была предложена в 1957 г. американским физиком Хью Эвереттом. Мне лично особенно интересно, можем ли мы вообще узнать, что такие многочисленные миры существуют одновременно с нашим. До сих пор никто не придумал способа проверить или исследовать такие миры – если они вообще есть. Теория утверждает, что существует всего одна волновая функция, описывающая развитие Вселенной совершенно детерминистическим образом. Следовательно, мы возвращаемся к воззрениям Ньютона и Лапласа – но с новым уравнением.

Наша проблема состоит в том, что мы – часть этой волновой функции и другие ее части для нас недоступны. Мы заключены в ней, заточены в одной из ветвей реальности, и то, что мы никогда не сможем познать другие миры, может быть неотъемлемой чертой нашего сознательного опыта. Но нельзя ли проанализировать, что происходит в других ветвях, при помощи математики? Я наблюдаю электрон в данной точке пластины детектора, но знаю при этом, что волновая функция описывает, что с ним происходит во всех других ветвях реальности. Разумеется, в этих многочисленных мирах существует не только электрон, но и «Я» – в других ветвях имеются копии меня, наблюдающие попадание электрона в другие участки пластины.

Эта модель реальности чрезвычайно интересна и, как кажется, непосредственно влияет на то, что мы называем сознанием. Мы еще вернемся к вопросу сознания на шестом «рубеже», но и эта глава ставит непростой вопрос: может ли сознание быть связано с поведением такой волновой функции? Почему мне известен лишь один результат попадания электрона в пластину? Является ли мое осознание того, что происходит вокруг меня, некоей разновидностью попадания электрона в детектор? Отсутствует ли у оборудования, установленного в моей голове, способность работать с множественными мирами? Когда я выглядываю в окно, фотоны, прилетающие от дома напротив, попадают в мой глаз и регистрируются сетчаткой. Почему, выглянув однажды в окно, я не могу увидеть, что дома номер 14 и 16 поменялись местами?

Пытаясь таким образом придать происходящему некоторую упорядоченность, мы подразумеваем, что скачок, порождаемый актом наблюдения, – не реальное событие, а нечто, происходящее в нашем уме. Наше восприятие говорит нам, что происходит скачок, но это не соответствует действительности. Однако такое объяснение вынуждает спросить: а что мы, собственно, делаем, когда даем миру научное объяснение?

Что такое наука? Как мы пытаемся исследовать свое взаимодействие со Вселенной? Если мы что-нибудь и узнаем, то только путем измерения и наблюдения. Математические уравнения могут сказать нам, чего ожидать, но без измерений такие предсказания остаются голой теорией. Поэтому довольно странно, что, для того чтобы «узнать» что-то о Вселенной, мы можем только наблюдать, тем самым заставляя частицы и свет решать, где они находятся и что они делают. Разве до этого не существовало ничего, кроме чистой фантазии? Мы не можем измерить всю волновую функцию, мы можем только познать ее математическими методами. Является ли квантовая волновая функция частью Вселенной, которую мы никогда не сможем познать – потому что, с нашей точки зрения, истинное познание невозможно без измерений? А измерение вызывает ее коллапс. Вероятно, вера в возможность знания, превышающего возможности измерения, – это проявление обычной жадности. Такое мнение выражал, например, Стивен Хокинг:

Я не требую, чтобы теория соответствовала реальности, потому что я не знаю, что такое реальность. Реальность – не такое качество, которое можно проверить лакмусовой бумажкой. Меня интересует только, чтобы теория правильно предсказывала результаты измерений[59].

Один вход, много выходов

С чем я действительно не могу примириться в основной современной интерпретации квантовой физики, так это с тем, что, поставив опыт с двойной щелью дважды с точным соблюдением одинаковых условий, можно получить разные результаты. Это противоречит всему тому, во что я верю. Именно поэтому меня привлекла математика: определенность доказательства существования бесконечного количества простых чисел означает, что в следующий раз, когда я проверю его, я не рискую внезапно обнаружить, что количество этих чисел стало конечным. Я считал, что естественные науки в конечном счете состоят из таких же определенностей, даже если человек не всегда может до них добраться. Когда я бросаю игральную кость, я соглашаюсь с математикой теории хаоса, утверждающей, что я, возможно, никогда не смогу рассчитать исход такого броска. Но эта математика, по крайней мере, говорит, что в случае точно такого же броска кость упадет той же стороной. Однако физика, созданная на этом «рубеже», ставит такой вывод под вопрос.

Вероятностный характер поведения игральной кости выражает недостаток информации. В квантовой физике речь не идет о незнании физиком полной картины. Даже полное знание всего не устраняет участия вероятности и случая. Согласно современной интерпретации квантовой физики, одна и та же начальная точка, одни и те же входящие данные могут породить разные исходы броска кости.

Кое-кто может усомниться в том, что говорить о точном повторении начальных условий опыта и процедуры его проведения вообще имеет смысл, – строго говоря, такое повторение невозможно. Точное воспроизведение локальных условий возможно, но эксперимент происходит во Вселенной, а Вселенная изменяется. Волновую функцию Вселенной невозможно перемотать назад и запустить заново. Вселенная – это одноразовый эксперимент, одной из частей волновой функции которого являемся мы. Каждое наблюдение изменяет волновую функцию Вселенной, и отменить такое изменение нельзя.

Но что, если реальность случайна и не так детерминистична, как мне того хотелось бы? Фейнман говорит в своих «Лекциях по физике»: «В настоящее время приходится ограничиваться расчетом вероятностей. Мы говорим “в настоящее время”, но мы очень серьезно подозреваем, что все это – уже навсегда и разгрызть этот орешек человеку не по зубам, ибо такова природа вещей»[60].

Судя по всему, истинная случайность воплощена на моем столе не в игральной кости, привезенной из Лас-Вегаса, а в баночке урана, купленной в интернете.

6

Приключения Алисы в Стране чудес[61]

Должен сказать, что меня сильно беспокоят противоречия между квантовым миром и здравым смыслом. Кажется, так и должно быть. Нильс Бор, один из основателей квантовой механики, говорил: «Если квантовая физика вас не шокирует, значит, вы ее еще не поняли».

Ричард Фейнман пошел еще дальше: он заявил, что «никто не понимает квантовой физики». Когда ему было за шестьдесят, он признал в программной лекции на конференции по вычислительной физике: «Позвольте мне сразу сказать, что нам всегда (только это секрет, закройте скорее дверь!) – нам всегда было очень трудно понять то видение мира, которое дает квантовая механика. Меня лично оно до сих пор нервирует».

Мой внутренний математик мечтает о каком-нибудь детерминистическом механизме, который рассказал бы мне, когда уран в моей банке испустит следующую частицу. Но вероятностный характер квантовой физики чрезвычайно сильно ограничивает нашу способность узнать, что произойдет дальше. Уравнения Ньютона открыли перед нами увлекательнейшие перспективы: зная импульс и положение частицы, мы можем полностью определить ее поведение в будущем при помощи уравнений движения. А если повторить тот же опыт с другой частицей, расположенной в той же точке и имеющей такой же импульс, то ее траектория совпадет с траекторией первой частицы.

Но в 1927 г. Гейзенберг совершил открытие, которое практически уничтожило такую надежду на познание будущего. Он выяснил, что выражение «знать импульс и положение частицы в одно и то же время», по сути дела, не имеет смысла. Оказалось, что между знанием положения частицы и знанием ее импульса существует некая жесткая связь. Если измерять положение частицы, увеличивая точность измерений, то оказывается, что ее импульс может иметь целый диапазон возможных значений. В этом и состоит знаменитый принцип неопределенности Гейзенберга, ставший, вероятно, самым серьезным препятствием для нашего познания. Как мы увидим далее, именно принцип неопределенности Гейзенберга виноват в том, что уран, лежащий у меня на столе, испускает частицы случайным образом.

То, как важно быть готовым пересмотреть видение мира в свете этого нового открытия, хорошо выразил сам Гейзенберг: «В любом случае, где мы переходим от познанного к непознанному, мы надеемся нечто понять, но одновременно, пожалуй, необходимо при этом подчеркнуть новое значение слова “понимать”»[62].

Квантовая физика не столько дает ответы на старые вопросы, сколько подвергает сомнению те вопросы, которые мы имеем право задавать.

Квантовые ковры

Вот к чему сводится суть открытия Гейзенберга. Возьмем одну из частиц внутри моего куска урана. Если мы знаем, что эта частица пребывает в состоянии покоя – не движется, – то оказывается, что мы не можем знать, где она находится. То есть если проверить ее местоположение, есть шанс обнаружить ее в любой точке Вселенной. Напротив, если попытаться точно определить, где эта частица находится, мы внезапно теряем возможность определения того, как она движется. Частица, которая казалась нам покоящейся, неожиданно оказывается движущейся в произвольном направлении.

Назад Дальше