В труде «Альмагест», написанном во II веке нашей эры14, греческий астроном Птолемей описал систему эпициклов и деферентов, которая оставалась общепризнанной моделью устройства мира вплоть до XVI столетия. Никто не подвергал ее сомнению, даже когда более точные измерения требовали включения все большего количества эпициклов. Последняя версия этой модели, включавшая в себя 39 циклов и эпициклов, описывала движение пяти планет, Солнца и Луны [5]. Мечта Платона о геометрической элегантности привела к созданию чрезвычайно запутанной схемы, которую даже церковь критиковала за нерациональность. «Если бы Всемогущий Бог посоветовался со мной перед творением, я бы порекомендовал что-нибудь попроще», — сказал в XIII веке о системе Птолемея король Альфонсо X Кастильский, которого еще называли El Sabio — Мудрый.
Сейчас мы знаем, что Аполлоний был неправ. Более простая модель планетных орбит все же существует, о чем мы поговорим чуть позже. На самом деле пренебрежительная фраза «прибавлять эпициклы» употребляется в наше время по отношению к плохой науке, бесконечному совершенствованию ошибочной теории в надежде на то, что в конце концов она сработает. Тем не менее система эпициклов господствовала так долго потому, что она как нельзя лучше справлялась со своей задачей. В большинстве случаев теория опровергается тогда, когда доказана ее несостоятельность. Но теорию эпициклов так никто и не опроверг, поскольку это невозможно в принципе. Интересно то, что циклы и эпициклы можно использовать для описания любой замкнутой непрерывной орбиты [6]. Идея Аполлония оказалась настолько действенной, что никому даже в голову не приходило искать что-то другое.
В 2005 году аргентинцы Кристиан Карман и Рамиро Серра решили описать невероятно сложную орбиту, а затем найти эпициклы, образующие ее [7]. Они выбрали для этого изображение Гомера Симпсона, поскольку оно вовсе не похоже на орбиту, а еще потому, что это ведь Гомер Симпсон!15 Представленный ниже рисунок с немалым количеством завитушек — это модель гомеровской орбиты. Большая окружность — деферент, а переплетение окружностей поменьше содержит 9999 эпициклов разных размеров. Планета вращается вокруг 9999-го эпицикла, который движется вокруг 9998-го эпицикла и так далее до самого первого эпицикла, вращающегося вокруг деферента. К тому времени, когда планета завершит один оборот вокруг деферента (и два оборота вокруг первого эпицикла, три вокруг второго и т. д., в том числе 10 000 оборотов вокруг 9999-го эпицикла), она пройдет весь путь по этому рисунку. Карман и Серра были, по их собственным словам, «поистине взволнованы и очень довольны», когда их модель заработала. Пожалуй, Платон тоже оценил бы присущую Гомеру поэтичность.
Похоже на Мардж, но это Гомер: путь, пройденный планетой, орбита которой представляет собой совокупность 10 000 окружностей, — это портрет главы семейства Симпсонов
Шестнадцатого мая 1571 года в 4:37 утра в небольшом немецком городке Вайль-дер-Штадт был зачат Иоганн Кеплер [8]. Он родился через 224 дня, 9 часов и 53 минуты, в 14:30 27 декабря. Эти детали известны нам благодаря гороскопу, который Кеплер составил для себя в возрасте 26 лет. В нем он рассказывает также о том, что едва не умер от оспы, что его руки были сильно изуродованы, что он часто страдал от болезней кожи и что когда в возрасте 21 года он потерял невинность, то это далось ему «с невероятным трудом и сопровождалось острой болью в мочевом пузыре». Исходя из всего этого, мы можем сделать вывод о наличии у Кеплера качеств, определивших всю его жизнь: мнительность, склонность к самоанализу, одержимость звездами и любовь к числам.
К тому времени, когда Кеплер составил этот гороскоп, он уже опубликовал свою первую книгу The Mystery of the Cosmos («Тайна мироздания»), в которой представил модель планетарной системы, основанную на предложенной на полстолетия раньше революционной теории Николая Коперника о том, что планеты вращаются вокруг Солнца. Хотя Коперник отвергал геоцентризм, он все же считал, что планеты перемещаются по эпициклам. Кеплер усовершенствовал эти воззрения посредством модели, в которой орбиты планет образуют суперструктуру из геометрических объектов, так называемых платоновых тел, таких как куб, тетраэдр, октаэдр, икосаэдр и додекаэдр. Все эти фигуры были разного размера, но в центре структуры находилось Солнце. Безусловно, это была неправильная модель, тем не менее книга «Тайна мироздания» сделала Кеплеру имя в ученых кругах, и, когда знаменитый датский астроном Тихо Браге начал строить новую обсерваторию возле Праги, он взял амбициозного молодого немца к себе в помощники.
Браге был эпатажным аристократом. Он носил протез носа из сплава золота и серебра, после того как кузен отсек нос ему во время дуэли, состоявшейся из-за одной математической формулы. Кроме того, у Браге был домашний лось, который упал замертво, выпив слишком много пива за ужином. Однако этот датчанин гораздо бережнее обращался со своими астрономическими данными — самыми точными и полными на то время, о чем знала вся Европа. Тихо Браге поручил Кеплеру разобраться с орбитой Марса — планеты, путь которой больше всего отклонялся от круговой орбиты. Это была изнурительная, кропотливая работа, требующая построения возможных орбит, расчета прогнозируемых позиций и проверки данных наблюдения. «Если этот утомительный метод внушает вам отвращение, — объяснял Кеплер впоследствии, — он должен внушить вам и сострадание ко мне, поскольку я проделал это не менее семидесяти раз».
В период «боев с Марсом» Кеплер сделал перерыв, во время которого изобрел современную оптику. В книге The Optical Part of Astronomy («Оптика в астрономии») есть раздел о зеркалах, сделанных в форме конических сечений: эллипса, параболы и гиперболы. В действительности именно в этом труде Кеплер ввел слово «фокус», означавшее точку пересечения отраженных лучей света. Когда Кеплер вернулся к Марсу, его так вывела из себя неспособность найти систему круговых движений, которая согласовывалась бы с данными наблюдения, что в конце концов он решил отказаться от теории эпициклов. Новое направление исследований вряд ли внушало Кеплеру оптимизм. «Я очистил авгиевы конюшни астрономии от окружностей и спиралей, — сетовал он, — и остался с одной телегой навоза». На протяжении года Кеплер экспериментировал с яйцевидной орбитой — овалом, сплюснутым у одного края и более острым у другого, хотя сам ученый испытывал отвращение к такой форме орбиты и не считал ее ни симметричной, ни гармоничной. Для того чтобы аппроксимировать этот овал в своих вычислениях, он использовал эллипс — геометрическую фигуру, которую знал по работе с применением конических сечений в оптике. И тут его осенило: эта фигура с ее свойствами сама может все объяснить. «O me ridiculum! Каким же глупцом я был! — воскликнул Кеплер. — Идеальный эллипс — это единственно возможная форма орбиты планет».
Поначалу Кеплер отбрасывал идею об эллиптической орбите Марса, потому что считал ее слишком простой для того, чтобы ее не заметили другие ученые. Кроме того, он знал, что у эллипса два фокуса, а это противоречило теории об уникальности Солнца, предполагающей, что оно должно быть в центре системы, а не в одной из одинаково важных точек. Однако затем Кеплер понял, что, несмотря на кажущееся противоречие, Солнце действительно находится в одном из фокусов и что именно его влияние определяет скорость движения планеты по орбите. (В другом фокусе нет ничего.) Чем ближе планета к Солнцу, тем быстрее она движется по эллиптической орбите, но охватывает при этом равную площадь за равные промежутки времени, как показано на рисунке ниже. Философ Норвуд Рассел Хэнсон писал, что величайшее достижение Кеплера было самым смелым актом воображения за всю историю науки [9]. «Даже концептуальные потрясения [двадцатого столетия] не требовали такого разрыва с прошлым». Модель эпициклов Аполлония была в конце концов вытеснена эллипсом — кривой, которой Великий Геометр сам дал имя и свойства которой знал лучше, чем кто-либо другой.
Для того чтобы добраться из точки A в точку B, требуется столько же времени, сколько из точки C в точку D, поскольку заштрихованные сегменты имеют одинаковую площадь. Следовательно, по мере отдаления от Солнца планета движется медленнее
В 1610 году Кеплер получил послание от Галилео Галилея, выдающегося астронома, жившего за Альпами, в Италии. Оно гласило:
smaismrmilmepoetalevmibunenugttaviras
Новость Галилея была слишком захватывающей, чтобы держать ее в себе, но и слишком ценной, чтобы рассказывать о ней всем подряд, тем самым помогая кому-то в его научных изысканиях. Поэтому ученый написал ее в виде анаграммы, что устанавливало приоритетность открытия, а также позволяло сохранить детали в тайне и избежать чрезмерной ответственности в случае, если он окажется неправ.
smaismrmilmepoetalevmibunenugttaviras
Новость Галилея была слишком захватывающей, чтобы держать ее в себе, но и слишком ценной, чтобы рассказывать о ней всем подряд, тем самым помогая кому-то в его научных изысканиях. Поэтому ученый написал ее в виде анаграммы, что устанавливало приоритетность открытия, а также позволяло сохранить детали в тайне и избежать чрезмерной ответственности в случае, если он окажется неправ.
Эта загадка сводила Кеплера с ума. В конце концов ему показалось, что он у цели, когда он переставил буквы и получил вместо бессмысленного набора символов предложение, имевшее смысл: «Salve umbistineum geminatum Martia proles» — «Привет вам, близнецы, порождение Марса» (хотя он и использовал здесь латинизацию немецкого слова umbeistehen). Кеплер был убежден, что его соперник обнаружил у Марса два спутника. Впоследствии Галилей расшифровал эту анаграмму так: «Altissimum planetam tergeminum observavi» — «Высочайшую планету тройную наблюдал». Открытие касалось вовсе не Марса, а Сатурна: Галилей выявил у этой планеты выпуклости по бокам, которые образуют кольца Сатурна. Но самое интересное, что Кеплер таки оказался прав! У Марса действительно есть два спутника, Фобос и Деймос, которые были открыты два столетия спустя.
Чуть позже Галилей поддразнил Кеплера еще одной анаграммой, но на этот раз она имела смысл и носила намеренно провокативный характер: «Haec immatura a me iam frustra leguntur — oy», или «Этa ущербность рaзбирaется мною покa безуспешно». В данном случае Кеплер тоже нашел решение со смыслом: «Macula rufa in Jove est gyratur mathem etc» — «Ибо Юпитер, увы, говорят, вертится, испачканный красным пятном». На самом деле Галилей хотел передать такое послание: «Cynthiae figuras aemulatur Mater Amorum» — «Мать любви [Венера] подражает фигурам Цинтии [Луны]» (это означало, что у Венеры тоже есть фазы, напоминающие фазы Луны). Тем не менее ошибочный перевод Кеплера снова оказался пророческим. Через пятьдесят лет астрономы увидели, что у Юпитера действительно есть красное пятно — гигантский атмосферный вихрь, известный как Большое красное пятно.
Галилей и Кеплер изменили представление об ученых, превратившись из пассивных исследователей в героев-первооткрывателей. Имея перед собой единственную Вселенную, каждый из них хотел получить признание как человек, определивший ее строение. После Галилея многие ученые, в том числе Роберт Хук, Христиан Гюйгенс и Исаак Ньютон, использовали не поддающиеся расшифровке анаграммы, для того чтобы защитить свою интеллектуальную собственность. Так продолжалось до тех пор, пока публикация в журнале не стала в XVIII столетии стандартным способом объявить о последних научных достижениях.
Галилей принял теорию Коперника о том, что Земля вращается вокруг Солнца, но опровергал гипотезу Кеплера об эллиптической форме орбит планет [10]. Несмотря на это, Галилей добился серьезных успехов в изучении движения сферических объектов другого типа. Летом 1592 года в качестве молодого профессора математики он посетил своего друга и покровителя, маркиза Гвидобальдо дель Монте в его замке в Урбино. Маркиз был назначен генеральным инспектором укреплений Тосканского герцогства, а это означало, что для него особый интерес представляла траектория движения пушечных ядер. Они летят по прямой линии, а затем падают вниз, как предполагала традиционная аристотелевская механика, или двигаются по какой-то кривой, прежде чем долетят до цели?
Для того чтобы выяснить это, друзья провели эксперимент, который оказался настолько простым, что трудно было поверить, как никто не додумался до этого раньше. Они взяли два небольших металлических шара, окунули их в чернила и запустили по диагонали по наклонной плоскости. След, оставленный каждым из шаров, представлял собой симметричную дугу. Галилей видел, что шары поднимаются вверх точно так же, как и опускаются вниз: траектория движения вверх представляет собой зеркальное отображение траектории падения. Эта симметрия навела Галилея на мысль о том, что движение можно разделить на горизонтальные и вертикальные элементы. В свободном полете характер движения объекта по горизонтали отличается от характера вертикального движения. Впоследствии Галилей провел и другие эксперименты с шарами, покрытыми чернилами, продемонстрировав, что если тело брошено со стола горизонтально, то:
1)-горизонтальное смещение пропорционально затраченному времени. Так, если тело проходит 1 единицу расстояния за 1 секунду, оно пройдет 2 единицы за 2 секунды, 3 единицы за 3 секунды и т. д.;
2)-вертикальное смещение пропорционально квадрату затраченного времени. Так, если тело падает на 1 единицу расстояния за 1 секунду, оно упадет на 4 единицы за 2 секунды, на 9 единиц за 3 секунды и т. д.
На основании знаний о свойствах конических сечений, открытых Аполлонием, Галилей смог сделать вывод, что траектория движения шара, запущенного со стола, представляет собой параболу, как показано на рисунке слева [11]. Когда какое-либо тело, например баскетбольный мяч, запускается под углом (рисунок справа), оно тоже движется по параболе, но сначала мяч должен подняться по одной ее стороне, а затем опуститься по другой ее стороне. Такая парабола является траекторией движения объекта, свободно движущегося под воздействием силы тяжести. Это может быть струя фонтана, полет стрелы или движение мяча, брошенного в воздух. Писатель Томас Пинчон назвал свой выдающийся роман Gravity’s Rainbow16 в соответствии с описанием оставленного немецкой ракетой «Фау-2» параболического следа, представляющего собой метафору расцвета и падения культур.
На протяжении почти двух тысяч лет конические сечения считались вершиной древнегреческой математической мысли, красивыми кривыми без какой-либо практической функции. Затем были открыты сразу две области их применения, которые, как оказалось, «скрывались» у всех на виду: планеты перемещаются по эллиптическим орбитам, а брошенные тела — по параболам. В конце XVII века Исаак Ньютон продемонстрировал, как оба эти следствия вытекают из его законов движения и всемирного тяготения. Галилей и Кеплер изучали одну и ту же проблему в разных масштабах. (Строго говоря, брошенный в воздух камень на самом деле начинает двигаться по эллиптической орбите вокруг Земли, и он бы завершил процесс, если бы масса Земли была сосредоточена в ее центре. Однако, с точки зрения наблюдателя, мы можем предположить, что брошенный камень движется по параболе.)
У парабол есть одно важное, удивительное свойство: все они имеют одну и ту же форму. Как параболу ни уменьшай или ни увеличивай, она останется подобной другим параболам, точно так же как окружность не меняет своей формы при изменении диаметра. Это вытекает из нашего первоначального определения конических сечений, согласно которому каждый угол наклона секущей плоскости образует уникальную фигуру. Окружность и парабола могут быть образованы только под одним углом: в случае окружности секущая поверхность должна быть параллельной основанию конуса, а в случае параболы — боковой поверхности конуса. Эллипс и гипербола могут быть получены под разными углами наклона секущей поверхности, а значит, они могут иметь разную форму.
Для описания параболы существуют два определения: 1) это геометрическое место точек, равноудаленных от заданной точки и заданной линии, известных как фокус и директриса (см. рисунок 1); и 2) это кривая, которая, будучи сделанной из отражающего материала, отражает все лучи света, исходящего из фокуса, параллельно друг другу (см. рисунок 2).
Геометрия параболы
Первое определение предоставляет оригамистам легкий способ построения параболы. Обозначьте точку F на листе бумаги, как продемонстрировано на первом рисунке ниже. Возьмите произвольную точку P на нижней кромке листа и сложите лист так, чтобы совместить эти точки друг с другом, как показано стрелкой. Полученную линию сгиба отметьте пунктиром. Повторите данную процедуру для множества точек, расположенных на нижней кромке листа бумаги. Полученная в итоге кривая — это парабола. (Подсказка: каждый сгиб образует линию, точки которой равноудалены от фокуса и произвольной точки.)
Построение параболы посредством сгибания листа бумаги
Второе определение объясняет, почему парабола — самая распространенная кривая в магазине осветительных приборов. Если лампочка установлена в фокусе параболического зеркала, лучи света отражаются параллельно. Вращение параболы вокруг ее центральной оси образует параболоид, в форме которого и сделаны отражающие зеркала в фонариках, прожекторах и автомобильных фарах.
Этот процесс работает и в обратном направлении. Параллельные лучи света, поступающие в параболоид, отражаются его поверхностью в фокус. Следовательно, если задача рефлектора — собрать в пучок солнечные лучи (которые можно считать параллельными, поскольку Солнце находится очень далеко), понадобится параболическая поверхность. Параболоиды широко применяются в технологии использования солнечной энергии. Например, отражатель Шеффлера, параболическая металлическая чаша, повсеместно используется в развивающихся странах для приготовления пищи. Он направлен на Солнце и медленно поворачивается вслед за его движением, для того чтобы поймать как можно больше солнечных лучей, отражая их в одну и ту же точку (фокус), в которой находится плита. Самая мощная солнечная печь представляет собой параболическое зеркало высотой 45 метров, расположенное во французских Пиренеях, неподалеку от Одейо. Из-за огромных размеров само зеркало не двигается, а принимает отраженный солнечный свет от 63 маленьких плоских вращающихся зеркал. В фокусе зеркала находится круглый щит, который в солнечные дни нагревается до 3500 °С — достаточно высокая температура, для того чтобы варить свинец, плавить вольфрам или превратить дикого кабана в пепел.