Красота в квадрате - Алекс Беллос 22 стр.


Мы с вами заново открыли тождество Эйлера! Формула, описывающая позицию точки −1 на комплексной плоскости, выглядит следующим образом:

–1 = eiπ

Это уравнение можно преобразовать в такую форму:

eiπ + 1 = 0

Кроме того, поскольку точка i расположена на расстоянии в 1 единицу от начала координат под углом π/2 радиан к горизонтали, мы можем сделать вывод, что i = eiπ/2, а так как −i находится на расстоянии в 1 единицу от начала координат под углом 3π/2 радиан, напрашивается вывод, что −i = e3iπ/2.

Сделайте глубокий вдох. Сейчас мы используем эту информацию, чтобы ответить на потрясающий вопрос, который еще несколько страниц назад мог бы показаться полным бредом, граничащим с безумием: что представляет собой ii, или квадратный корень из минус единицы в степени квадратный корень из минус единицы?

Поскольку мы знаем, что eiπ/2 = i, мы знаем также, что:

Здесь i исчезает, оставляя после себя такое число, которое поняли бы даже древние греки. Только представьте себе!

Комплексная плоскость позволяет забыть беспокойную мысль о том, что i — это квадратный корень из отрицательного числа. Мы должны помнить только то, что комплексное число a + bi представляет собой точку на плоскости с координатами (a, b), где a и b — действительные числа, а также что сложение или умножение этих координат подчиняется определенным правилам. (Разумеется, эти правила основаны на свойствах квадратного корня из минус единицы, но сейчас нас должно интересовать не то, как они появились, а в чем их суть.) Вскоре математики задумались над тем, можно ли создать такие же правила для трехмерной системы координат, что позволило бы описывать вращения в пространстве подобно тому, как правила для комплексных чисел описывают вращения в двумерной системе координат. Больше всех проникся этой идеей ирландский математик Уильям Роуэн Гамильтон, но ему не удавалось найти ответ. И вот однажды в 1843 году, когда Гамильтон прогуливался с женой вдоль Королевского канала в Дублине, на него снизошло озарение, которое вылилось в знаменитый математический акт вандализма: Гамильтон нацарапал на стене моста Брумбридж такую формулу: i2 = j2 = k2 = ijk = –1. Сейчас на этом месте установлена памятная табличка.

Гамильтон понял, что невозможно найти математически допустимые правила для координат с тремя числами, но их можно применить для четырех чисел. Он назвал свое открытие «кватернионы». Подобно тому как комплексное число a + bi (где a и b — действительные числа, а i — √−1) можно представить в виде точки на плоскости с координатами (a, b), кватернион a + bi + cj + dk, где a, b, c и d — действительные числа, а i, j и k равны √–1, можно записать с помощью координат (a, b, c, d). Хотя каждая из мнимых единиц i, j и k равна √–1, все же они разные, как следует из уравнения, записанного Гамильтоном на кирпичной кладке моста. Для того чтобы кватернионы работали, Гамильтону понадобилось еще одно странное правило, которое гласит, что порядок умножения мнимых единиц имеет значение. Например, i × j = k, но j × i = –k.

Кватернионы Гамильтона представляли собой весьма необычную концепцию, но все же позволили ему создать модель вращений в трехмерном пространстве. В кватернионе (a, b, c, d) числа (b, c, d) — это три координаты для трех размерностей пространства, тогда как число а отображает время. Эти новые числа так взволновали Гамильтона, что он посвятил их изучению большую часть оставшейся жизни.

Если концепция кватернионов кажется вам несколько странной, вы в этом не одиноки. Современники Гамильтона высмеяли его, и особенно Чарльз Доджсон, математик из Оксфордского университета, больше известный как Льюис Кэрролл. Его книги для детей «Алиса в Стране чудес» и «Алиса в Зазеркалье» славятся своими логическими головоломками и математическими играми. Однако совсем недавно один критик заявил, что в основе сюрреалистического юмора этих книг лежит не богатое воображение Доджсона, а его желание поглумиться над изменениями в математике викторианской эпохи, которых он не одобрял, что больше всего касалось тенденции к повышению уровня абстракции в алгебре. Мелани Бейли написала в своей статье, что глава A Mad Tea Party («Безумное чаепитие») — это сатира на кватернионы Гамильтона, и даже само название представляет собой игру слов, поскольку его можно интерпретировать как mad t-party, где t — научный символ для обозначения времени [13]. За чаепитием Безумный Шляпник, Мартовский Заяц и Мышь Соня вращаются вокруг стола, подобно мнимым числам i, j и k в кватернионе. Четвертый гость по имени Время отсутствует, поэтому на мытье посуды времени нет. Когда Мартовский Заяц сказал Алисе, чтобы она говорила то, что думает, Алиса ответила: «…Во всяком случае… что я думаю, то и говорю. В общем, это ведь одно и то же!» Но порядок слов в предложении все же меняет смысл, точно так же как порядок умножения i и j меняет результат.

Однако история показала, что Доджсон был неправ. Гамильтон расширил концепцию числа, включив в нее кватернионы, что разорвало связующую нить между числами и смыслом, существовавшую до этого. Теперь математики считают само собой разумеющимся создание новых типов чисел исключительно на основании формальных определений. Смысл может быть найден (как это произошло с комплексными числами, которые оказались точками на комплексной плоскости) или нет. Задача состоит в том, чтобы исследовать закономерность и структуру и понять, к чему это вас приведет.

К концу XIX века другие математические теории вытеснили кватернионы, но Гамильтон был бы безумно счастлив узнать, что на протяжении последних нескольких десятилетий они снова широко используются. Кватернионы применяются в процессе компьютерных расчетов трех осей вращения объектов, находящихся в полете, — продольной, поперечной и вертикальной. Различные организации и компании, работающие в таких отраслях, как аэронавтика и компьютерная графика, от NASA до Pixar, используют кватернионы в своем программном обеспечении.

Невозможно создать дееспособную систему счисления с пятью, шестью или семью упорядоченными действительными числами, но для восьми чисел такая система существует — она обозначается термином «октонион» и записывается как (a, b, c, d, e, f, g, h). Октонион — это идея, ждущая воплощения, и, скорее всего, ждать осталось недолго. Один из основных претендентов на роль «теории всего», объединяющей квантовую механику и Общую тео­рию относительности, — это М-теория, один из вариантов теории струн, в которой элементарные частицы атома считаются струнами [14]. М-теория оперирует 11 измерениями, состоящими, по мнению ряда ученых, из восьми измерений октониона и трех пространственных измерений. Гамильтон записал свои идеи на кладке ирландского моста, но они, возможно, изначально вплетены в ткань мироздания.

Бертран Рассел, единственный математик, получивший Нобелевскую премию по литературе, описывал красоту математики так: «Математика, при правильном на нее взгляде, обладает не только истиной, но и высшей красотой — красотой холодной и суровой, подобно скульптуре, не обращенной ни к какой стороне нашей слабой натуры, лишенной украшений живописи и музыки и тем не менее утонченно чистой и способной к строгому совершенству, свойственному лишь величайшему искусству» [15]. Тождество Эйлера, совершенное и глубокое, полностью соответствует этому описанию. Математическая красота может быть и эстетичной, хотя Рассел не дожил до того дня, когда мог бы увидеть это воочию. В 1980 году, через десять лет после его смерти, на комплексной плоскости была открыта фигура, оказавшаяся настолько поразительной и неординарной, что это изменило ход наших мыслей не только в отношении математики, но и науки в целом.

Прежде чем рассказать об этом, я должен познакомить вас с концепцией итерации, которая представляет собой процесс многократного повторения одной и той же операции. Мы затронули эту тему в предыдущей главе, когда говорили о последовательности, каждый член которой в два раза больше предыдущего:

1, 2, 4, 8, 16, 32, 64, 128…

Вместо того чтобы записывать все члены последовательности, я мог бы определить ее как итерацию x → 2x, в которой первый член равен 1:

Вместо того чтобы записывать все члены последовательности, я мог бы определить ее как итерацию x → 2x, в которой первый член равен 1:

1 → 2

2 → 4

4 → 8

И так далее.

Итеративность этого процесса обусловлена тем, что результаты каждого действия (в данном случае удвоения) используются в качестве исходных данных для следующего действия. Итерация — это система с обратной связью: число, полученное на выходе, снова подается на вход, обеспечивая получение нового числа, и т. д.

А теперь давайте рассмотрим простую итерацию xx2.

Если мы начнем с 1, то получим следующие значения:

1 → 12 = 1

1 → 1

1 → 1

Другими словами, эта последовательность состоит из бесконечного количества единиц.

Если начнем с 2, последовательность будет такой:

2 → 22 = 4

4 → 16

16 → 256

256 → 65536 → …

Эта последовательность стремится к бесконечности.

Если же последовательность начинается со значения 0,1, тогда мы получим:

0,1 → (0,1)2 = 0,01

0,01 → 0,0001

0,0001 → 0,00000001 → …

Эта последовательность стремится к нулю.

Мы можем обобщить поведение всех чисел, принимающих участие в этой итерации. Если положительное число n больше 1, его квадрат n2 больше n, а значит, числа, полученные посредством итерации, становятся все больше. Если положительное число n меньше 1, тогда n2 составляет долю от n, то есть числа, полученные посредством итерации, все время уменьшаются и стремятся к нулю. Поскольку квадрат отрицательного числа — это положительное число, все числа меньше −1 стремятся к бесконечности, а все отрицательные числа от −1 до 0 — к нулю.

Назовем числа, которые стремятся к бесконечности, словом «беглецы», а числа, которые не делают этого, — словом «узники». В случае итерации xx2 мы видели, что число 2 — это беглец, а числа 1 и 0,1 — узники. В оставшейся части главы мы будем искать узников любой итерации, которых обозначим как «множество узников». В итерации xx2 множество узников — это числа от −1 до 1; на представленном ниже рисунке они отмечены жирной линией.

Множество узников итерации x → x2

Рассмотрим новую итерацию xx2 + c, где c — исходное значение итерации. Другими словами, наша система с обратной связью поглощает немного больше информации, чем обычно. Она начинает с числа c, возводит его в квадрат и прибавляет c, возводит результат в квадрат и прибавляет c, возводит результат в квадрат и прибавляет c и т. д. Это небольшое изменение правил влечет за собой серьезные последствия в плане определения того, какие исходные значения относятся к узникам, а какие — к беглецам.

Начнем с числа 1, которое, как мы выдели выше, является узником в итерации xx2. В случае итерации xx2 + c оно становится беглецом (обратите внимание, что мы начинаем с 1, а значит, c = 1):

1 → 12 + 1 = 2

2 → 22 + 1 = 5

5 → 26

26 → 677 → 458330 → …

А теперь давайте посмотрим, что произойдет с числом −2, которое является беглецом в итерации xx2. В случае итерации xx2 + c оно превращается в узника (обратите внимание, что мы начинаем с −2, значит, c = −2):

–2 → –22 – 2 = 2

2 → 22 –2 = 2

2 →2

2 →2

Оказывается, в итерации xx2 + c множество узников содержат числа от −2 до 0,25, как показано на рисунке ниже.

Множество узников итерации x → x2 + с

Теперь поиграем в игру «узники против беглецов» на комплексной плоскости — системе координат, в которой каждая точка определяется комплексным числом. Для начала давайте вспомним, как на комплексной плоскости выполняется операция умножения: умножение на число i эквивалентно повороту против часовой стрелки на 90 градусов. В более общем виде, когда два комплексных числа умножаются друг на друга, углы, которые образуют соответствующие точки с горизонтальной осью, необходимо сложить, а расстояния от начала координат — умножить. (Обозначим комплексные числа символом z, а не a + bi.) На представленном ниже рисунке комплексное число z1 находится под углом θ градусов к горизонтали, на расстоянии r, а число z2 — под углом ϕ градусов к горизонтали, на расстоянии R. Таким образом, комплексное число z1 × z2 расположено под углом θ + ϕ градусов по отношению к горизонтальной оси, на расстоянии r × R. Теперь становится понятно, почему умножение на i — это четверть оборота. Число i — это точка на комплексной плоскости с координатами (0, 1), одна единица вверх по мнимой оси, под прямым углом к горизонтали. Следовательно, умножение комплексного числа, представленного соответствующей точкой на комплексной плоскости, на число i, сводится к повороту на 90 градусов против часовой стрелки и умножению расстояния этой точки от начала координат на 1, значит, расстояние остается прежним — это и есть математическое описание четверти оборота.

Умножение на комплексной плоскости

Что происходит с комплексными числами в итерации zz2?

Начнем с мнимого числа i:

ii2 = –1

–1 → 1

1 → 1

Следовательно, i принадлежит множеству узников.

Существует более быстрый способ обнаружить множество узников на комплексной плоскости с использованием информации об умножении комплексных чисел. При умножении двух комплексных чисел мы суммируем углы и умножаем расстояния. Следовательно, для возведения комплексного числа в квадрат необходимо удвоить его угол и возвести в квадрат расстояние. Рассмотрим единичную окружность — с радиусом 1 и центром в начале координат. Все точки такой окружности находятся на расстоянии 1 от начала координат, а это значит, что квадрат любой из этих точек расположен на расстоянии 12 = 1 от начала координат. Другими словами, квадрат числа, соответствующего точке на единичной окружности, остается на единичной окружности. Тогда в случае итерации zz2 все точки на окружности должны принадлежать к множеству узников. Аналогичным образом, если расстояние от точки до начала координат меньше 1, квадрат числа, соответствующего этой точке, находится ближе к началу координат и в процессе итерации будет приближаться к нему все больше. Следовательно, все точки, которые расположены внутри единичной окружности, тоже принадлежат к множеству узников. С другой стороны, если расстояние от точки до начала координат больше 1, квадрат числа, соответствующего этой точке, находится дальше от начала координат и в процессе итерации будет отдаляться от него все больше и больше. Таким образом, в случае итерации zz2 множество узников представляет собой единичный круг, показанный на рисунке ниже.

Множество узников в итерации z → z2

Теперь приготовьтесь к самому интересному. Нам необходимо определить множество узников в итерации zz2 + c, где c — начальное значение итерации. Давайте подумаем, что означает эта итерация на комплексной плоскости. Мы берем точку c, затем возводим ее в квадрат, что поворачивает ее вокруг начала координат и возводит в квадрат ее расстояние от начала координат. Затем мы прибавляем c, что смещает эту точку на комплексной плоскости на расстояние c. После этого новая точка поворачивается, а ее расстояние от начала координат возводится в квадрат, прежде чем она будет снова смещена на расстояние c. Таким образом, данная итерация представляет собой бесконечное чередование таких операций, как вращение, смещение и перенос в каждой точке на комплексной плоскости. Посредством логических умозаключений невозможно определить, как будет выглядеть множество узников в данном случае. Единственный способ — выполнить итерации для огромного количества точек, что до появления компьютеров было неосуществимо.

В 1979 году работавший в компании IBM французский математик Бенуа Мандельброт заинтересовался итерацией zz2 + c. Его первые распечатки показали множество узников в форме капли с крохотными разводами, напоминающими маленькие брызги, отделившиеся от основной капли. Мандельброт оставил своим ассистентам записку, в которой предупреждал, что эти дефекты появились не из-за ошибки компьютера, и просил не удалять их с распечаток. Увеличив степень детализации этих участков, Мандельброт увидел, что они состоят из удивительных узоров, соединенных с множеством узников крохотными ответвлениями. Постепенно сформировалась полная картина множества узников. Она напоминала жука-долгоносика с игольчатым панцирем и не походила ни на одну известную геометрическую фигуру.

Назад Дальше