Основным требованием к развитой информационной технологии является наличие некоего носителя информации с большим количеством ячеек памяти. Свойством каждой такой ячейки долж на быть способность всегда находиться в одном из строго определенного числа состояний. Во всяком случае, это справедливо для той цифровой информационной технологии, которая господствует в нашем рукотворном мире. Существует и альтернативный вид информационных технологий, основанный на аналоговой информации. Информация, записанная на обычной грампластинке, аналоговая. Она хранится в виде волнообразной бороздки. А информация на современных лазерных дисках (которые часто называют компакт-дисками, что досадно, так как это наименование неинформативно, да еще к тому же произносится обычно с неграмотным ударением на первый слог) цифровая, и хранится она в виде ряда микроскопических углублений, каждое из которых либо определенно наличествует на месте, либо определенно там отсутствует, и среднего не дано. Это отличительный признак цифровой системы: определяющие ее компоненты всегда четко находятся либо в одном состоянии, либо в другом — без полумер, промежутков и компромиссов.
Информационная технология генов — цифровая. Этот факт открыл в прошлом веке Грегор Мендель, хотя вряд ли он сформулировал бы его таким образом. Мендель доказал, что наследственность наших родителей не смешивается в нас. Наследственную информацию мы получаем в виде дискретных частиц. Когда речь идет о любой определенной частице, то мы либо унаследовали ее, либо нет. На самом деле, как заметил Р. Э. Фишер, один из отцов-основателей того, что теперь называется неодарвинизмом, факт дискретного наследования всегда лежал прямо у нас перед носом, достаточно было только вспомнить о наследовании пола. Мы получаем признаки от двух родителей мужского и женского пола, однако каждый из нас либо мужчина, либо женщина, а не гермафродит. Каждый новорож денный имеет примерно равные шансы оказаться мальчиком или девочкой, но любой конкретно взятый ребенок наследует только один из этих признаков, а не их сочетание. Теперь мы знаем, что это справедливо и для всех наследуемых частиц. Они не соединяются друг с другом, а только перетасовываются при каждом переходе из одного поколения в следующее, оставаясь при этом обособленными и независимыми. Разумеется, воздействия, оказываемые этими элементарными генетическими единицами на организмы, могут убедительно создавать видимость смешивания. Если один из родителей высокого роста, а другой низкого или если у одного из них кожа темная, а у другого светлая, то дети нередко наследуют промежуточный вариант данного признака. Однако эта видимость смешивания относится только к воздействию на организмы и возникает благодаря суммированию мелких эффектов большого количества частиц. Когда же дело доходит до передачи следующему поколению самих частиц, то они оказываются все такими же независимыми и дискретными.
Это различие между смешанной и дискретной наследственностью сыграло важную роль в истории нашего понимания эволюции. Во времена Дарвина все (за исключением Менделя, который сидел запершись в своем монастыре и, к сожалению, остался незамеченным до самой своей смерти) считали наследование смешанным. Шотландский инженер по имени Флеминг Дженкин обратил внимание на то, что факт смешанного наследования (считавшийся истинным) чуть ли не отменяет всю теорию эволюции путем естественного отбора. Эрнст Майр довольно невежливо заметил, что статья Дженкина “основывается на всех тех предрассудках и заблуждениях, что свойственны физикам”. Как бы то ни было, доводы Дженкина причинили Дарвину немало беспокойства. Наиболее красочным их воплощением была аллегория про белого человека, потерпевшего кораблекрушение на острове, населенном “неграми”:
…пускай у него будут все преимущества, какими только может обладать белый по сравнению с цветными; давайте предположим, что в борьбе за существование его шансы на то, чтобы прожить долгую жизнь, будут намного выше, чем у местных вождей; однако же из всех этих допущений вовсе не следует вывод, что через определенное или неопределенное число поколений все обитатели острова станут белыми. Вполне возможно, что наш потерпевший кораблекрушение герой станет царем, что в борьбе за существование он перебьет огромное количество черных, что у него будет множество жен и детей, в то время как немалая часть его подданных проживут свою жизнь и умрут холостяками… Характерные особенности белого человека существенно повысят вероятность того, что он доживет до глубокой старости, и все же его одного будет недостаточно, чтобы через какое угодно число поколений потомки его подданных сделались белыми… В первом поколении появится несколько десятков смышленых мулатов, в среднем намного более сообразительных, чем негры. Можно предположить, что в течение нескольких поколений трон будут занимать более или менее желтокожие цари, но поверит ли кто-нибудь в то, что население всего острова постепенно приобретет белый, ну или хотя бы желтый, цвет кожи или что островитянам передадутся энергия, отвага, находчивость, терпеливость, самообладание, выносливость, то есть все те качества, благодаря которым наш герой смог убить стольких их предков и произвести такое количество потомства, — фактически те качества, которые борьба за существование отбирала бы, если бы только она могла хоть что-нибудь отбирать?
Пусть вас не отвлекают расистские допущения о превосходстве белых. Во времена Дарвина и Дженкина они так же не подвергались сомнению, как сегодня не оспаривается наш видовой шовинизм, провозглашающий права человека, человеческое достоинство и священность человеческой жизни. Аргументацию Дженкина можно перефразировать с помощью более нейтральной аналогии. Если вы смешаете белую краску с черной, получится серая краска. Если вы смешаете две серые краски, то вам не удастся воссоздать ни исходную белую, ни исходную черную краску. Такое смешивание красок не слишком отличается от доменделевских представлений о наследственности, и даже в современной массовой культуре наследственность нередко описывается как смешение “кровей”. Дженкин в своих рассуждениях фактически ведет речь о заглушении. Если наследственность смешанная, то с течением поколений изменчивость неизбежно будет заглушаться. Господствовать будет все бóльшее и бóльшее единообразие. В конце концов не останется никакой изменчивости, на которую естественный отбор мог бы воздействовать.
Как бы убедительно ни звучали такие доводы, направлены они не только против теории естественного отбора. Еще в большей степени они противоречат неопровержимым фактам, касающимся наследственности как таковой. То, что разнообразие из поколения в поколение уменьшается, явно не соответствует истине. В наши дни люди не более похожи друг на друга, чем во времена наших дедушек и бабушек. Разнообразие поддерживается. Существует некий пул изменчивости, с которой естественный отбор может работать. Это было математически доказано в 1908 г. В. Вайнбергом и независимо от него — эксцентричным математиком Г. Х. Харди, который однажды, к слову, как свидетельствует книга для записей пари его (и моего) колледжа, принял от своего приятеля такое пари: “Бьюсь об заклад, что завтра взойдет солнце; если нет, то обязуюсь выплачивать ему полпенни пожизненно”. Но дать исчерпывающий ответ Флемингу Дженкину в понятиях корпускулярной генетики смогли только основатели современной генетики популяций: Р. Э. Фишер и его коллеги. В этом была своя ирония, поскольку, как мы увидим в главе 11, ведущие последователи Менделя на заре XX века считали себя антидарвинистами. Фишер и его единомышленники доказали, что дарвиновский отбор возможен, а проблема, поставленная Дженкином, как выяснилось, изящно решается, если эволюционным изменением считать изменение относительной частоты встречаемости отдельных наследственных частиц или генов, каждый из которых либо присутствует в данном конкретном организме, либо нет. Дарвинизм после Фишера получил название неодарвинизма. Его цифровая природа — это не просто оказавшийся верным любопытный факт насчет генетических информационных технологий. По всей вероятности, она — необходимое предварительное условие, без которого дарвинизм вообще невозможен.
Дискретные цифровые ячейки в нашей электронной технике могут находиться только в двух состояниях, которые принято обозначать как 1 и 0, но с таким же успехом вы можете представлять их себе как “высоко и низко”, “включено и выключено”, “туда и обратно” — важно только, чтобы их можно было четко отличить друг от друга и чтобы паттерн их состояний мог быть “считан” и преобразован во что-нибудь. Для хранения этих “единиц” и “нулей” электронные технологии используют различные физические носители, в том числе магнитные диски, магнитную ленту, перфокарты и перфоленту, а также интегральные “схемы”, состоящие из множества крошечных транзисторов.
Дискретные цифровые ячейки в нашей электронной технике могут находиться только в двух состояниях, которые принято обозначать как 1 и 0, но с таким же успехом вы можете представлять их себе как “высоко и низко”, “включено и выключено”, “туда и обратно” — важно только, чтобы их можно было четко отличить друг от друга и чтобы паттерн их состояний мог быть “считан” и преобразован во что-нибудь. Для хранения этих “единиц” и “нулей” электронные технологии используют различные физические носители, в том числе магнитные диски, магнитную ленту, перфокарты и перфоленту, а также интегральные “схемы”, состоящие из множества крошечных транзисторов.
Основной носитель информации в семенах ивы, муравьях и вообще во всех живых клетках имеет не электронную, а химическую природу. В данном случае используется способность некоторых типов молекул к “полимеризации”, то есть к объединению в протяженные цепи какой угодно длины. Полимеры бывают самыми разными. Например, полиэтилен — полимеризованный этилен — состоит из небольших молекул вещества, называемого этиленом, собранных в длинные цепочки. А крахмал и целлюлоза — это полимеризованные сахара. Некоторые из полимерных цепей неоднородны: они образованы не одинаковыми небольшими молекулами вроде этилена, а двумя или более разновидностями таких молекул. Едва в полимерной цепи возникает подобная гетерогенность, как сразу же становится теоретически возможно и возникновение информационных технологий. Если цепь состоит из двух видов молекул, то ничто не мешает обозначить их как 1 и 0 и — при условии что цепь достаточно протяженна — хранить на ней любое количество информации любого сорта. Те полимеры, которые используются для этой цели в живых клетках, называются полинуклеотидами. Две основные разновидности полинуклеотидов сокращенно называются ДНК и РНК. Обе представляют собой цепочки из небольших молекул, называемых нуклеотидами. Как у ДНК, так и у РНК цепи гетерогенные, состоящие из нуклеотидов четырех разных типов. Тут-то, разумеется, и открывается возможность для хранения информации. Информационная технология живой клетки использует не два различных состояния, 1 и 0, а целых четыре, которые мы можем условно обозначить как А, Т, Ц и Г. Принципиальная разница между нашей двоичной информатикой и технологией живых клеток, использующей четырехзначный код, совсем невелика.
В конце главы 1 я уже упоминал, что информационной емкости одной человеческой клетки достаточно для того, чтобы вместить Британскую энциклопедию, все 30 томов, три или четыре раза с лишним. Соответствующая цифра для семян ивы или для муравьев мне неизвестна, но она будет не менее ошеломляющей. В ДНК одного спермия лилии или сперматозоида саламандры хватит емкости, чтобы разместить 60 копий Британской энциклопедии. Количество информации в ДНК некоторых амеб, несправедливо называемых “простейшими”, соответствует 1000 Британских энциклопедий.
Как ни удивительно, но на самом деле в клетке — человеческой, скажем, — используется, по-видимому, не более 1 % генетической информации, что примерно соответствует одному тому Британской энциклопедии. Зачем нужны остальные 99 %, никому не известно. В одной из своих предыдущих книг я высказал предположение, что эта ДНК может быть паразитической, находящейся на иждивении у работающего 1 %, — данная мысль позже была подхвачена молекулярными биологами под именем теории “эгоистичной ДНК”. У бактериальной клетки информационная емкость примерно в 1000 раз меньше, чем у человеческой, и используется практически полностью — для паразитов места маловато. Она способна вместить “всего-навсего” одну копию Нового Завета!
Современные генные инженеры уже владеют такими методами, которые позволяют вписать в ДНК бактерии Новый Завет и вообще все что угодно. В любых информационных технологиях “значение” символов является произвольным, и ничто не мешает нам установить соответствие между, скажем, тройками знаков четырехбуквенного алфавита ДНК и 26 буквами нашего алфавита (этого хватило бы для обозначения всех заглавных и строчных букв и еще для 12 знаков препинания). К сожалению, на то, чтобы записать Новый Завет в бактерию, понадобится где-то пять человеко-веков, так что я сомневаюсь, что кому-нибудь захочется с этим возиться. Если бы это было сделано, то, учитывая скорость размножения бактерий, можно было бы печатать Новый Завет тиражом 10 млн в день. Умей люди разбирать алфавит ДНК, это была бы мечта миссионера, но — увы! — буквы у такого издания были бы столь маленькими, что все 10 млн копий смогли бы одновременно танцевать на булавочной головке.
Память ЭВМ условно принято подразделять на ПЗУ и ОЗУ. ПЗУ означает “постоянное запоминающее устройство” — то, что называется “только для чтения”. Но точнее было бы сказать “память для однократной записи и многократного чтения”. Расположение нулей и единиц “нарезается” при ее производстве раз и навсегда. Оно останется неизменным на все время существования запоминающего устройства, и информация, записанная таким образом, может быть считана сколько угодно раз. Другая разновидность электронной памяти, называемая ОЗУ, может не только считываться, но и “писаться” (к не слишком изящному компьютерному сленгу привыкаешь довольно быстро). Таким образом, ОЗУ может все, что может ПЗУ, и даже больше. Аббревиатура ОЗУ расшифровывается как оперативное запоминающее устройство. Главным свойством ОЗУ является то, что в любую его часть вы можете помещать любой паттерн из единиц и нулей так часто, как только захотите. Почти вся память компьютера представляет собой ОЗУ. Когда я печатаю эти слова, они сразу же направляются в ОЗУ. Программа подготовки текстов, контролирующая этот процесс, также находится в ОЗУ, хотя теоретически она могла бы быть записана на ПЗУ и более никогда не меняться. ПЗУ используется для ограниченного набора тех стандартных программ, которыми вы пользуетесь постоянно, и в них вы не сможете ничего изменить, даже если захотите.
ДНК — это ПЗУ. Информация с нее может считываться миллионы раз, но записывается лишь однажды — в момент зарождения той клетки, в которой эта ДНК находится. В клетках любого индивидуума ДНК “зашита при производстве” и на протяжении всей его жизни не меняется, если не считать случайных повреждений, происходящих крайне редко. При этом с нее могут сниматься копии. При каждом клеточном делении ДНК удваивается. Порядок нуклеотидов А, Т, Ц и Г добросовестно воспроизводится в каждой новой клетке из тех триллионов, что образуются в ходе развития ребенка. Когда происходит зачатие нового индивидуума, в его ПЗУ — то есть ДНК — “отжигается” новый и уникальный набор данных, который останется с ним на всю жизнь и будет скопирован во все клетки его организма (за исключением половых клеток, в каждую из которых, как мы увидим, попадет только половина его ДНК, выбранная наугад).
Любая машинная память, как ПЗУ, так и ОЗУ, является адресной. Другими словами, каждая ячейка этой памяти имеет свое обозначение — как правило, номер, но это не более чем общепринятая условность. Очень важно понимать различие между адресом ячейки памяти и ее содержимым. Каждую ячейку можно идентифицировать по ее адресу. Например, первые две буквы этой главы, “За”, занимают в настоящий момент в ОЗУ моего компьютера ячейки 6446 и 6447, а всего там таких ячеек 65 536. В другой раз содержимое этих двух ячеек может оказаться иным. Содержимое ячейки — это та информация, которая была записана туда последней. У ячеек ПЗУ тоже есть и адрес, и содержимое. Отличие в том, что здесь любое содержимое привязано к своему адресу раз и навсегда.
ДНК организована в нитчатые структуры, называемые хромосомами. Они напоминают длинную компьютерную ленту с записанными данными. Вся информация, содержащаяся в ДНК, имеет свой адрес в том же самом смысле, что и данные, записанные на ПЗУ, да и на ленту тоже. Конкретные номера или наименования, которыми обозначается тот или иной адрес, произвольны — точно так же, как и в случае с компьютерной памятью. Принципиально то, что любое определенное местоположение на моей ДНК строго соответствует определенному местоположению на вашей ДНК: у них один и тот же адрес. Содержимое “ячейки” 321762 в моей ДНК может быть то же самое, что и у вашей “ячейки” 321762, а может и отличаться. Но моя “ячейка” 321762 занимает в моих клетках абсолютно то же самое местоположение, что и ваша “ячейка” 321762 в ваших клетках. Под “местоположением” в данном случае имеется в виду местоположение на конкретной хромосоме. Точное физическое положение самой хромосомы в клетке значения не имеет и может меняться, так как хромосома плавает в жидкости. Однако порядок расположения “ячеек памяти” вдоль хромосомы четко определен, и каждая “ячейка” имеет свой точный адрес, так же как и каждая единица информации на магнитной ленте не меняет своего местоположения от того, разбросана эта лента по полу или аккуратно намотана на катушку. Все мы, люди, обладаем одинаковым набором адресов ДНК, но содержимое этих адресов может быть разным. Вот основная причина того, почему мы все не похожи друг на друга.