2. Основные факты планиметрии Лобачевского. (3)
3. Особенности геометрии на сфере. (3)
4. Методы доказательства теорем (прямое доказательство, от противного, контрпример, метод симметрии и т. д.). (1–2)
5. Группы преобразований плоскости и их инварианты. (3)
6. Топологические многообразия в геометрии. (3)
§ 2. Основные понятия планиметрии
2.1. Справочная информация
На экзамене по геометрии очень важно давать правильные (корректные) определения. Часто допускаются такие ошибки, как «порочный круг» (например, круг – это часть плоскости, ограниченной окружностью, а окружность – это граница круга), наличие синонима определяемого термина в определении, пропуск «несущественных деталей» (например, касательная к окружности – это прямая, имеющая с окружностью одну общую точку, «деталь» – это тот факт, что прямая должна лежать с окружностью в одной плоскости).
Определения геометрических фигур можно дать различными способами:
1. Через род и видовое отличие.
Например: квадрат – это прямоугольник с равными сторонами. Прямоугольник в определении – ближайший род, равенство сторон – видовое отличие.
2. Генетически (указание происхождения понятия).
Например, окружность – это множество точек плоскости, находящихся на равном расстоянии от данной точки, лежащей в этой плоскости.
3. Через указание свойств фигуры (дескрипции).
Пример: число π – это то число, которое, будучи умножено на длину диаметра, даёт длину его окружности.
4. Конструктивно (указывается способ построения объекта).
Пример: пусть дана произвольная окружность. Разделим её на n равных частей последовательно расположенными точками А1, А2…, Ап. Замкнутая ломаная A1A2…АnА1 образует правильный n-угольник.
5. Аксиоматически.
К примеру, определение площади фигуры F даётся как числовая функция S(F), удовлетворяющая определённым условиям (аксиомам).
Другие способы дачи определений в геометрии встречаются крайне редко.
Перейдём к определениям.
Неопределяемыми геометрическими фигурами на плоскости являются точка и прямая.
Точки принято обозначать прописными латинскими буквами: А, В, С, D …. Прямые обозначаются строчными латинскими буквами: а, b, с, d ….
Точка А лежит на прямой а, точка В лежит на прямой b, точка О принадлежит одновременно прямым а и b, т. е. является точкой пересечения этих прямых (рис. 1).
Полный текст доступен на www.litres.ru