---Размеры альвеолярного пространства, которые определяют дистанцию, по-крываемую диффузией. Линейная скорость движения вдыхаемого газа в альвеолярном пространстве существенно замедляется, поскольку на уровне ацинуса общая площадь поперечного сечения очень велика. Поэтому смешение альвеолярного газа здесь происходит путем молекулярной диффузии.
---Сосудистая пульсация системного и легочного кровообращения стимулирует внутриальвеолярное смешивание и поток газа в бронхиолах.
---Межальвеолярные и бронхиолоальвеолярные коллатерали способствуют коллатеральной вентиляции, а также межальвеолярному и внутриальвеолярному смешиванию газов.
Любое повышение альвеолярного транспорта кислорода и углекислого газа, например, при физической нагрузке сопровождается повышением градиентов концентрации газов, которые способствуют возрастанию альвеолярной стратификации. Нагрузка стимулирует альвеолярное смешивание путем повышения потока вдыхаемого воздуха и возрастания кровотока. Из патологических состояний наиболее частой причиной возникновения внутриальвеолярной стратификации является аномальное увеличение размеров альвеол из-за перерастяжения и/или разрушения структуры легочной ткани. Это происходит при эмфиземе легких, когда механического продвижения и скорости диффузии становится недостаточно для преодоления альвеолярной дистанции без существенного концентрационного градиента. Альвеолярная стратификация затрудняет газообмен и формирует дополнительное препятствие диффузии между газовой фазой и кровью. Это повышает альвеолокапиллярный градиент давления для кислорода и углекислоты.
Феномен коллатеральной вентиляции, впервые описанный Алленом и Юнгом в 1931 г., очень важен для оптимального функционирования легких, особенно когда поражены мелкие дыхательные пути вследствие болезни бронхов. Функция альвеол при окклюзии дыхательных путей в этом случае поддерживается с помощью коллатеральной вентиляции. Существует три типа коллатеральных соединений.
---Интеральвеолярные (или поры Кона). Каждая альвеола в норме имеет около 50 интеральвеолярных соединений от 3 до 13 микрон в диаметре. Эти поры увеличиваются в размере с возрастом, а также при патологических состояниях, таких, как бронхит и эмфизема.
---Бронхоальвеолярные соединения (или каналы Ламберта), которые присутствуют в норме у детей и взрослых и иногда достигают в диаметре 30 микрон.
---Межбронхиолярные соединения (каналы Мартина), которые не встречаются у здорового человека, однако появляются при некоторых заболеваниях, поражающих дыхательные пути и легочную паренхиму.
Гравитация также оказывает влияние на легочный кровоток. Региональная перфузия единицы легочного объема возрастает по направлению от верхушек к базальным отделам легких в большей степени, чем это происходит с вентиляцией, поэтому в норме вентиляционно-перфузионное отношение (Vа/Qс) снижается от верхушек к нижним отделам. На вентиляционно-перфузионные отношения оказывает влияние целый ряд факторов:
---положение тела (в горизонтальном положении отсутствует разница между перфузией верхних и нижних отделов, а появляется вентиляционно-перфузионный градиент между передними и задними отделами);
---возраст (распределение региональной перфузии становится более равномерным с возрастом, как результат изменения механических свойств легочной ткани);
---растяжение легких (чем больше легочная ткань растянута, тем больше разница между апикальной и базальной региональной перфузией).
Но не вся кровь, перфузирующая легкие, участвует в газообмене. В норме небольшая порция крови может перфузировать невентилируемые альвеолы, и происходит так называемое шунтирование. При различных патологических состояниях шунт может нарастать и оказывать влияние на газообмен. Нарушение газового состава крови часто является результатом аномальных вентиляционно-перфузионных отношений. У здорового человека отношение Va/Qc может варьировать от нуля (циркуляторный шунт) до бесконечности (вентиляция мертвого пространства), однако в большей части легочной паренхимы вентиляционно-перфузионное отношение составляет примерно 0,8. Экстремальные показатели регистрируются только в небольших участках легочной ткани. Состав альвеолярного воздуха оказывает влияние на кровоток в легочных капиллярах. При низком со-держании кислорода (гипоксия), а также понижении содержания углекислоты (гипокапния) в альвеолярном воздухе отмечаются повышение тонуса гладкой мускулатуры легочных сосудов и их констрикция с возрастанием сосудистого сопротивления.
type: dkli00020
ЛЕГОЧНОЕ КРОВООБРАЩЕНИЕ
Основными составляющими легочного газообмена являются вентиляция и перфузия. Исследованию вентиляционной способности легких у больных, страдающих заболеваниями легких, уделяется особое внимание, тогда как легочное кровообращение оценивается недостаточно полно из-за отсутствия неинвазивных методов, позволяющих изучить гемодинамику в легких.
ДАВЛЕНИЕ В СИСТЕМЕ ЛЕГОЧНОЙ АРТЕРИИ
Давление в системе легочной артерии очень низкое по сравнению с давлением в большом круге кровообращения. Считается, что нормальное систолическое давление в легочной артерии равно 25 - 30 мм рт.ст., диастолическое давление - 8 мм рт.ст., среднее давление - 15 - 20 мм рт.ст., т.е. среднее давление в системе легочной артерии приблизительно в 6 раз ниже, чем среднее давление в большом круге кровообращения. Поскольку давление в легочной артерии такое низкое, то в перераспределении кровотока внутри легкого большую роль играет гидростатическое давление. Высота легкого взрослого человека приблизительно равна 30 см, поэтому гидростатическая разница в давлении между верхушкой легкого и его основанием равна 30 см крови, что эквивалентно 23 мм рт.ст., т.е. имеется существенная разница давлений в капиллярах на разных уровнях легкого.
Для изучения перераспределения давления в легочных капиллярах использовались как прямое измерение гидростатического давления в капиллярах, так и косвенные методы исследования (например, измерение давления пропотевшей жидкости на плевральной поверхности изолированного легкого). Исследования показали, что давление в легочных капиллярах приблизительно в 2 раза ниже, чем давление в легочной артерии, и в 2 раза выше, чем давление в легочной вене. Вероятно, перераспределение давления в легочных капиллярах происходит таким образом, чтобы как можно больший объем крови соприкоснулся с альвеолярным газом при минимальной нагрузке на правые отделы сердца.
Давление в легочной артерии сильно варьирует от систолы к диастоле (25 и 8 мм рт.ст. соответственно), что позволяет обеспечить хороший кровоток в легочных капиллярах.
В настоящее время выделяют два типа легочных капилляров, которые расположены в альвеолярной стенке (альвеолярные и экстраальвеолярные). Давление в альвеолярных легочных капиллярах приблизительно равно давлению в альвеолах и зависит от фазы вдоха и выдоха. На вдохе, когда легкое расширено, давление в капиллярах такого типа становится на несколько сантиметров ниже альвеолярного из-за поверхностного натяжения внутри альвеол, и, наоборот, на выдохе давление в капиллярах близко к альвеолярному давлению. Давление в экстраальвеолярных капиллярах не зависит от давления в альвеолах, но так же зависит от фазы вдоха и выдоха. Диаметр этих капилляров определяется радиальной тягой окружающих альвеолярных стенок, поэтому на вдохе, когда легкое увеличивается в объеме, диаметр этих капилляров увеличивается, на выдохе - уменьшается из-за наличия эластической ткани в межальвеолярных перегородках.
СОСУДИСТОЕ СОПРОТИВЛЕНИЕ В СИСТЕМЕ ЛЕГОЧНОЙ АРТЕРИИ
Сосудистое сопротивление в системе легочной артерии определяется как:
path: pictures/01-asd.png
СКОРОСТЬ ПОТОКА В ЛЕГОЧНОЙ АРТЕРИИ
В нормальных условиях сосудистое сопротивление в легких составляет 5 л/мин. Поток крови определяется артериовенозной разницей давлений приблизительно равной 10 мм рт.ст. До настоящего времени механизмы регуляции сосудистого сопротивления изучены недостаточно полно, хотя известно, что при повышении артериального или венозного давления в малом круге кровообращения происходит снижение сосудистого сопротивления. Такая реакция необходима прежде всего для того, чтобы уменьшить нагрузку на правые отделы сердца. Показано, что при физической нагрузке, когда происходит повышение артериального и венозного давления, сосудистое сопротивление падает.
Известны два механизма регуляции легочного сосудистого сопротивления - открытие ранее закрытых капилляров (рекуррентные капилляры) и увеличение диаметра капилляров. В экспериментах на животных было показано, что повышение давления в легочной артерии от 0 до 15 см вод.ст. увеличивало число открытых капилляров на миллиметр длины альвеолярной стенки в два раза, а при повышении давления на 50 см вод.ст. средний диаметр капилляров увеличивался приблизительно от 3,5 до 7 mm.
Предполагают, что открытие ранее закрытых капилляров основано на свойст-вах плотной сети многочисленно связанных капиллярных сегментов. Для каждого капиллярного сегмента предопределено свое критическое давление, при котором происходит его открытие. Увеличение диаметра капилляров, очевидно, связано с выпиранием капиллярной стенки из-за повышения внутрикапиллярного давления. За счет раскрытия рекуррентных микрососудов и расширения капилляров увеличиваются площадь микроваскулярного русла и время контакта крови с альвеолярным газом, что в свою очередь облегчает газообмен.
Важную роль в регуляции сосудистого сопротивления играет объем легкого: при увеличении легочного объема сосудистое сопротивление сначала падает, а затем повышается. В норме на уровне функциональной остаточной емкости легкого сосудистое сопротивление минимально. Повышение легочного сосудистого сопротивления при уменьшении объема легкого связано с уменьшением диаметра экстраальвеолярных капилляров, так как диаметр этих сосудов поддерживается радиальной тягой окружающей паренхимы, поэтому наименьший диаметр этих капилляров будет при коллапсе легкого. Кроме того, при уменьшении легочного объема сосудистое сопротивление чрезвычайно чувствительно к вазоконстрикторным веществам типа серотонина, которые вызывают сокращение гладкой мускулатуры стенки сосудов.
В нижних отделах легкого на сосудистое сопротивление оказывает влияние и извилистый ход микрососудов. В верхних отделах легкого повышение сосудистого сопротивления, вероятно, вызвано поперечным сужением капилляров.
Многие биологически активные вещества оказывают влияние на сосудистое сопротивление. Так, например, серотонин, гистамин и норэпинефрин вызывают сокращение гладкой мускулатуры стенки легочных сосудов, поэтому сосудистое сопротивление повышается, а ацетилхолин и изопротеренол расслабляют сосуды, и сопротивление падает.
РАСПРЕДЕЛЕНИЕ ЛЕГОЧНОГО КРОВОТОКА
Распределение легочного кровотока в здоровом легком неравномерно. У человека в вертикальном положении скорость кровотока линейно снижается к верхушке легкого. В горизонтальном положении скорость кровотока в верхушке легкого и его основании будет приблизительно одинаковой, однако можно обнаружить различия в кровотоке между соседними отделами легкого, расположенными выше и ниже исследуемых участков. При физической нагрузке в вертикальном положении различия в кровоснабжении верхних и нижних отделов легкого уменьшаются.
Существует трехзональная модель распределения легочного кровотока (рис. 2--5).
Легкое разделено на три зоны согласно относительным величинам систолического давления в легочной артерии, альвеолярного и венозного давления.
Первая зона - это та область легкого, где альвеолярное давление превышает давление в легочной артерии. Исследования на изолированных легких показали, что в этой зоне нет кровотока, так как капилляры закрыты из-за высокого давления извне.
Вторая зона - та часть легкого, в котором систолическое давление в легочной артерии превышает альвеолярное, но альвеолярное давление превышает венозное. В этом участке легкого поток крови в основном определяется разницей между давлением в легочной артерии и альвеолярным давлением, а не артериовенозной разницей.
Увеличение скорости кровотока ниже зоны 2 можно объяснить гидростатическим повышением легочного артериального давления, если учесть, что альвеолярное давление остается постоянным. Таким образом, давление, определяющее поток крови, линейно увеличивается с расстоянием.
Зона 3 - та часть легкого, в которой венозное давление превышает альвеолярное давление.
Несмотря на свою простоту, трехзональная модель объясняет принцип распределения легочного кровотока, однако есть и другие факторы, которые оказывают влияние на распределение кровотока в здоровом легком, например объем легкого. Замечено, что в самой нижней области легкого существует зона пониженного кровоснабжения, которую называют 4-й зоной. Эта зона уменьшается на вдохе и увеличивается на выдохе - таким образом, происходит перераспределение кровотока (кровоток в области верхушки легкого становится выше, чем в основании). Кроме того, в перераспределение кровотока свой «вклад» вносят и экстраальвеолярные капилляры, диаметр которых зависит от фазы вдоха и выдоха. Известно, что в вертикальном положении альвеолы, расположенные в основании легкого, находятся в спавшемся состоянии под воздействием массы самого легкого, поэтому в этой области экстраальвеолярные капилляры очень узкие, что ведет к повышению сосудистого сопротивления, а значит, и к снижению кровотока. Влияние экстраальвеолярных капилляров на перераспределение кровотока возрастает при введении вазоконстрикторных веществ (например, серотонина) или вазодилататоров (например, изопротеренола); кроме того, повышение сосудистого сопротивления может быть вызвано межуточным отеком легкого, когда жидкость создает «манжету» вокруг капилляра, что повышает легочное сосудистое сопротивление.
path: pictures/2-5.png
Рис. 2-5. Трехзональная модель распределения легочного кровотока (Ра - давление в легочной артерии, РА - альвеолярное давление, РV - венозное давление.
Учитывая вышесказанное, одним из основных факторов, влияющих на распределение кровотока в легком, является гравитация, однако и негравитационные факторы играют свою роль в перераспределении кровотока. В условиях эксперимента на изолированном легком собаки было показано, что кровоснабжение в дорсокаудальном отделе выше, чем в вентральном; кроме того, существуют различия в кровоснабжении центральной части легкого и его периферии.
Распределение легочного кровотока изменяется при заболеваниях легких и некоторых заболеваниях сердечно-сосудистой системы. Нарушения крово-снабжения возникают в месте формирования фиброзных изменений или кист легкого. При тромбоэмболии мелких ветвей легочной артерии также возникает местное нарушение кровоснабжения легкого. Снижение кровотока в отдельном регионе легкого при сохраненной вентиляции этого участка является хорошим диагностическим критерием тромбоэмболии ветвей легочной артерии. Объемные образования легкого (например, карцинома) могут уменьшать регионарную перфузию. Сдавление основной легочной артерии извне даже небольшим по размеру образованием в легком может приводить к нарушению кровоснабжения одного из легких. При хронической обструктивной болезни легких и бронхиальной астме также усиливается неравномерность перфузии. Даже при хорошо контролируемой бронхиальной астме у некоторых пациентов отмечается ухудшение кровоснабжения отдельных участков легких.
При повышении давления в легочной артерии или при наличии врожденных пороков сердца, когда имеет место сброс крови из левых отделов сердца в правые, неоднородность распределения кровотока уменьшается, и, наоборот, при снижении давления в легочной артерии (например, при врожденном пороке серд-ца - тетраде Фалло) отмечается усиление неоднородности перфузии (верхушки легкого кровоснабжаются хуже оснований). При повышении венозного легочного давления, например, при митральном стенозе вначале происходит уменьшение неоднородности кровоснабжения, однако по мере прогрессирования заболевания неоднородность перфузии усиливается, что приводит к повышению кровоснабжения верхушек легкого и снижению оснований. Механизм этих изменений не вполне понятен, однако считается, что, возникающий при митральном стенозе периваскулярный отек приводит к повышению сопротивления экстраальвеолярных капилляров, а это, в свою очередь, ведет к повышению неравномерности перфузии.