ВЛИЯНИЕ ВНЕШНИХ ФАКТОРОВ НА ЛЕГОЧНУЮ МИКРОЦИРКУЛЯЦИЮ
Гидростатический градиент давления относится к пассивным регуляторам давления в сосудах малого круга кровообращения. В стенках легочных сосудов содержится небольшое количество гладкой мускулатуры, поэтому внешние факторы, влияющие на тонус гладкой мускулатуры, в нормальных условиях не вызывают значительных колебаний давления в системе легочной артерии, однако при некоторых состояниях, когда создаются предпосылки для увеличения количества гладкой мускулатуры в сосудистых стенках (например, в эмбриональном периоде, в условиях высокогорья или при длительной легочной гипертензии), внешние факторы могут оказать значительное влияние на давление.
Одним из факторов, оказывающих вазоконстрикторное действие, является гипоксия. В области с альвеолярной гиповентиляцией происходит сокращение гладкой мускулатуры в стенках легочных капилляров, что приводит к повышению давления в этом участке. Точный механизм такого ответа на гипоксию пока неизвестен, однако в экспериментах на изолированном легком показано, что он не связан с центральными механизмами регуляции.
Гипоксия как вазоконстрикторный фактор оказывает свое влияние на перерас-пределение вентиляционно-перфузионных соотношений в легком. В местах с гиповентиляцией уровень перфузии снижается, а в хорошо вентилируемых участках повышается, что помогает поддерживать напряжение кислорода в артериальной крови. Замечено, что у некоторых пациентов с бронхиальной астмой при ингаляции бронходилататоров происходит падение Р<sub>О2</sub>, что, вероятно, связано с повышением кровотока в местах с гиповентиляцией. У пациентов с тяжелой хронической обструктивной болезнью легких наблюдается повышение давления в легочной артерии, причем степень легочной гипертензии увеличивается после перенесенного обострения заболевания. Длительная кислородотерапия снижает степень легочной гипертензии, что позволяет улучшить прогноз течения заболевания у этих пациентов. Вероятно, вдыхание кислорода обеспечивает постепенное расслабление гладкой мускулатуры сосудистой стенки, что ведет к снижению давления.
Известно, что у людей, проживающих в условиях высокогорья, давление в легочной артерии выше нормы. При интенсивной физической нагрузке также происходит повышение давления в малом круге кровообращения. Показано, что если ингалировать 100% кислород не менее 2 нед здоровым людям, которые длительное время находились в условиях гипоксии, то немедленного снижения давления в легочной артерии не происходит, что, вероятно, связано со структурной перестройкой легочных сосудов.
На сегодняшний день известно много пептидов и других вазоактивных веществ, способных влиять на тонус гладкой мускулатуры сосудистой стенки. К ним относятся ангиотензин II, брадикинин, вазопрессин, натрийуретический пептид, эндотелин, соматостатин, продукты циклооксигеназного и липоксигеназного цикла арахидоновой кислоты. В зависимости от концентрации эти вещества оказывают либо вазоконстрикторное, либо вазодилатационное действие.
Вентиляция и перфузия являются основными механизмами, ответственными за выполнение главной функции легких - газообмен. Легочная перфузия осуществляется таким образом, чтобы обеспечить достаточный приток крови к хорошо вентилируемым альвеолам. Анатомическое строение сосудов легкого, распределение легочного кровотока, регулирующие и приспособительные механизмы контроля легочного кровообращения направлены на то, чтобы поддержать нормальное соотношение вентиляции и перфузии и обеспечить адекватное содержание кислорода в крови в различных условиях.
type: dkli00021
ГАЗООБМЕН
Основной функцией легких является газообмен, позволяющий кислороду поступать из окружающей среды в кровь, а углекислоте выводиться из организма. Газы перемещаются между кровотоком и воздухом за счет пассивной диффузии из областей с высоким парциальным давлением в области с низким. Барьер между газом и кровью (альвеолокапиллярная мембрана) очень тонок (около 0,3 микроm), однако обладает большой суммарной площадью (50 - 100 м<sup>2</sup>). В соответствии с законом Фика объем газа, пересекающего мембрану, прямо пропорционален ее площади и обратно пропорционален толщине. В связи с этим альвеолокапиллярная мембрана может считаться идеальной для осуществления газообменной функции.
Очень важным понятием для понимания газообмена является парциальное давление. Парциальное давление любого газа является произведением концентрации на общее давление. Парциальное давление увлажненного вдыхаемого воздуха составляет 20,9:100 x 713 = 149 мм рт.ст. Когда воздух поступает в верхние дыхательные пути, он согревается и увлажняется водяными парами. Парциальное давление водяного пара при 37 0;C составляет 47 мм рт.ст. В этих условиях общее давление сухой газовой смеси составляет 760 - 47=713 мм рт.ст. Р<sub>О2</sub> увлажненного вдыхаемого воздуха, таким образом, будет равняться 20,9:100 x 713=149 мм рт.ст. В общем соотношение между парциальным давлением (P) и фракционной концентрацией (F) в том случае, если водные пары присутствуют, описывается уравнением:
Px=F x (P<sub>B</sub> - P<sub>H2O</sub>),
где Р<sub>В</sub> - барометрическое давление, а Х - частицы газа.
На рис. 2--6 показан кислородный каскад, начиная с воздуха, который поступает в легкие, и заканчивая митохондриями, где кислород утилизируется. Сплошная линия обозначает идеальную ситуацию, которая не имеет места в реальной жизни, однако здесь представлена с целью дискуссии. Важной ступенью в этом каскаде является то, что парциальное давление кислорода по пути к альвеолам падает от 150 до 100 мм рт.ст. Причиной этого падения является то, что в альвеолах парциальное давление газа обусловлено двумя факторами - доставкой кислорода за счет альвеолярной вентиляции и его удалением за счет захвата легочным кровотоком.
path: pictures/2-6.png
Рис. 2-6. Изменение парциального напряжения кислорода от воздуха до тканей. Сплошная линия - гипотетически идеальная ситуация, пунктир - гиповентиляция (West J.B. Ventilation/Blood Flow and Gas Exchange. 5th ed. - Oxford: Blackwell Scientific, 1990).
Можно возразить, что процесс вентиляции не является постоянным, а капиллярный поток носит пульсовой характер. Однако легочный объем на уровне функ-циональной емкости легких достаточно велик, чтобы ослабить эти колебания. Результатом является то, что альвеолярное Р<sub>О2</sub> колеблется в пределах 3 - 4 мм рт.ст. с каждым дыхательным циклом и значительно меньше - с каждым сердечным циклом. Таким образом, и альвеолярная вентиляция, и капиллярный кровоток могут считаться постоянными стабильными процессами с точки зрения газообмена.
В идеальном легком вытекающая легочная венозная кровь (которая становится артериальной кровью системного кровотока) будет иметь то же парциальное давление кислорода, что и альвеолярный газ, а именно 100 мм рт.ст. Это очень близко к тому, что происходит в здоровом легком. Однако, когда артериальная кровь достигает периферических тканей, отмечается существенное падение Р<sub>О2</sub> на пути к митохондриям. Движение кислорода в периферических тканях осуществляется за счет пассивной диффузии, и митохондриальное Р<sub>О2</sub>, естественно, имеет более низкие значения, чем в артериальной или смешанной венозной крови. На самом деле Р<sub>О2</sub> в митохондриях может существенно варьировать в пределах организма, так как оно зависит от типа ткани и уровня потребляемого ею кислорода, тем не менее необходимо всегда учитывать, что митохондрии являются основной конечной целью всей системы транспорта кислорода и любое падение Р<sub>О2</sub>, вызванное, например, недостаточностью газообмена, неизбежно приведет к снижению тканевого Р<sub>О2</sub>.
Для углекислоты имеет место обратный процесс: СО<sub>2</sub> практически отсутствует во вдыхаемом воздухе, а уровень альвеолярного Р<sub>СО2</sub> составляет около 40 мм рт.ст. В норме артериальное и альвеолярное Р<sub>СО2</sub> приблизительно одинаковы, в то время как Р<sub>СО2</sub> смешанной венозной крови колеблется в пределах 45 - 47 мм рт.ст. Р<sub>СО2</sub> тканей, по всей видимости, довольно вариабельно и зависит, например, от состояния метаболизма, тем не менее, любое проявление неэффективности легких в отношении выведения СО<sub>2</sub> приводит к повышению Р<sub>СО2</sub> в тканях.
Существует четыре процесса, которые могут приводить к нарушению легочного газообмена: гиповентиляция, диффузионное ограничение, шунт и вентиляционно-перфузионная неравномерность.
ГИПОВЕНТИЛЯЦИЯ
Гиповентиляция как термин используется для обозначения тех состояний, когда альвеолярная вентиляция находится на аномально низком уровне по отношению к потреблению кислорода и продукции углекислоты. Под альвеолярной вентиляцией понимают объем газа, поступающего в альвеолы (т.е. за исключением вентиляции мертвого пространства). Гиповентиляция всегда приводит к артериальной гипоксемии (за исключением случаев, когда пациент дышит обогащенной кислородной смесью) и повышению артериального Р<sub>СО2</sub>.
Среди причин гиповентиляции могут быть угнетение дыхательного центра различными препаратами (производные морфина, барбитураты); аномалии проводящих путей спинного мозга; поражения клеток передних рогов спинного мозга (полиомиелит); поражение иннервации респираторных мышц (синдром Гвиллиан - Барр); болезни нейромышечного узла (миастения); поражения собственно респираторных мышц (прогрессирующая мышечная дистрофия); аномалии и травмы грудной клетки; обструкция верхних дыхательных путей; ожирение и другие причины.
Можно заметить, что при всех этих состояниях сами легкие в норме. Эту группу причин необходимо отделить от тех ситуаций, когда накопление углекислоты связано с хроническим легочным заболеванием. В этом случае основным фактором, приводящим к повышению Р<sub>СО2</sub> является вентиляционно-перфузионная неравномерность, являющаяся причиной неэффективности легочного газообмена.
Повышение альвеолярного Р<sub>СО2</sub>, как результат гиповентиляции, может быть рассчитано с применением уравнения альвеолярной вентиляции:
path: pictures/2f-1.png
,(1)
где К - константа. Уравнение можно преобразовать следующим образом:
path: pictures/2f-2.png
.(2)
Поскольку в нормальных легких альвеолярная (РА<sub>СО2</sub>) и артериальная (Ра<sub>СО2</sub>)идентичны, то можно написать:
path: pictures/2f-3.png
.(3)
Это очень важное уравнение, которое обозначает, что уровень Р<sub>СО2</sub> в альвеолярном газе и артериальной крови находится в обратной зависимости от альвеолярной вентиляции: например, если альвеолярная вентиляция снижается вдвое, то Р<sub>СО2</sub>, напротив, удваивается.
Те же принципы, использованные в уравнении (1), могут быть использованы по отношению к кислороду для понимания влияния гиповентиляции на альвеолярное (а следовательно, и артериальное) Р<sub>О2</sub>:
path: pictures/2f-4.png
,(4)
где VI - вдыхаемая альвеолярная вентиляция. Уравнение (4) выражает потребление кислорода как разницу между количеством кислорода, вдыхаемого в течение минуты (объем вдыхаемого газа x фракционную концентрацию кислорода) и выдыхаемого в течение минуты (объем альвеолярной концентрации и фракционная концентрация кислорода в альвеолярном газе).
Если посмотреть с практической точки зрения, то значение гипоксемии не столь велико по сравнению с задержкой углекислоты и последующим респираторным ацидозом. На рис. 2--7 представлено изменение газообмена, наступающее в результате гиповентиляции. Видно, что при тяжелой гиповентиляции альвеолярное Р<sub>СО2</sub> удваивается от 40 до 80 мм рт.ст., в то время как альвеолярное Р<sub>О2</sub> снижается от 10 до 60 мм рт.ст. Хотя артериальное Р<sub>О2</sub>, вероятно, будет незначительно ниже альвеолярного, тем не менее насыщение артериальной крови кислородом будет составлять около 80%. Тем не менее развивается выраженный респираторный ацидоз - уровень артериального рН около 7,2. Это показывает еще раз, что гипоксемия играет меньшую роль, чем накопление углекислоты и респираторный ацидоз при чистой гиповентиляции.
path: pictures/2-7.png
Рис. 2-7. Газообмен при гиповентиляции. Отмечаются относительно большой подъем РСО2 и соответствующее падение рН по сравнению со средней степенью падения насыщения кислорода артериальной крови (West J.B. Pulmonary Pathophysiology - the Essen-tials. 6th ed. - Baltimore, Lippincott Williams and Wilkins, 2003).
ДИФФУЗИОННОЕ ОГРАНИЧЕНИЕ
Так как кислород, углекислота и другие газы пересекают альвеолокапиллярный барьер путем простой диффузии, происходит это в соответствии с законом Фика, согласно которому скорость переноса газа через слой ткани прямо пропорциональна площади ткани (А) и разнице парциального давления по обе стороны от нее (Р<sub>1</sub> - Р<sub>2</sub>) и обратно пропорциональна ее толщине (Т):
path: pictures/2f-5.png
.(5)
Как было отмечено ранее, площадь альвеолокапиллярного барьера легких огромна (50 - 100 м<sup>2</sup>), а толщина в некоторых случаях составляет менее 0,3 микрон. Таким образом, характеристики альвеолокапиллярной мембраны идеальны для осуществления диффузии.
Скорость диффузии также пропорциональна константе D, которая зависит от свойств ткани и свойств газа. Константа пропорциональна растворимости газа (Sol) и обратно пропорциональна корню квадратному из молекулярного веса (MW):
path: pictures/2f-6.png
.(6)
Это означает, что углекислота диффундирует примерно в 20 раз быстрее кислорода через тканевые слои, так как С<sub>О2</sub> обладает значительно большей растворимостью (24:1 при 37 0;С), а корни квадратные из молекулярного веса для обоих газов различаются незначительно (1,17:1). Необходимо отметить, что эти расчеты справедливы только для тканевых мембран, а не для процессов потребления кислорода или выработки углекислоты легкими, где большую роль играет и скорость химических реакций.
Рис. 2--8 демонстрирует изменения Р<sub>О2</sub> крови в легочных капиллярах в норме. Расчеты основаны на законе Фика [уравнение (5)] и допущении, что диффузионные характеристики альвеолокапиллярного барьера однородны по всей длине капилляра. Показано, что время, которое кровь находится в легочных капиллярах, в норме в состоянии покоя составляет около 0,75 с.
Если альвеолокапиллярный барьер утолщается, скорость переноса кислорода снижается в соответствии с законом Фика, и скорость повышения Р<sub>О2</sub> замедляется. В этих условиях может измениться разница Р<sub>О2</sub> альвеолярного и конечно-капиллярного. Это означает, что имеет место некоторое диффузионное ограничение переноса кислорода. Важно отметить, что в большинстве случаев перенос кислорода ограничивается перфузией, и только в редких случаях может быть некоторое диффузионное ограничение.
path: pictures/2-8.png
Рис. 2-8. Временные характеристики изменения РО2 в легочных капиллярах при нормальной диффузии, сокращенном времени контакта и утолщенной альвеолокапиллярной мембране. Временные характеристики окиси углерода представлены нижней кривой (West J.B. Pulmonary Pathophysiology - the Essentials. 6th ed. - Baltimore: Lippincott Williams and Wilkins, 2003).
Для такого газа, как кислород, форма кривой диссоциации непостоянна и зависит от Р<sub>О2</sub> и в меньшей степени от таких факторов, как рН, Р<sub>СО2</sub>, температура и концентрации в эритроцитах 2,3-дифосфоглицерата.
Физиологически инертные газы, такие, как азот, полностью перфузионно ограничены в переносе, в то время как перенос окиси углерода через мембрану является преимущественно лимитированным диффузией. Количество окиси углерода, захватываемого кровью, полностью зависит от диффузионной способности альвеолокапиллярного барьера.
Скорость связывания гемоглобина с кровью довольно высока (около 0,2 с) и проходит 2 стадии: 1) диффузию кислорода через альвеолокапиллярный барьер, плазму и внутрь эритроцита; 2) реакцию кислорода с гемоглобином. Хотя, на первый взгляд, эти процессы различаются существенно, тем не менее их можно описать математически одним уравнением Roughton & Forster: