11. Продолжительность подобна линии, распространенность - телу. Но между ними есть и очевидная разница. Идеи длины, которые мы имеем о распространенности,
==253
могут принимать любое направление и образовывать форму, ширину и толщину; продолжительность же подобна длине прямой линии, простертой in infinit um, и не способна создать множественность, разнообразие или форму, но есть общая мера всего сущего, которой одинаково причастны все вещи, пока существуют. Ибо настоящий момент является общим для всех существующих теперь вещей и одинаково охватывает данную часть их существования, как если бы они все были одной-единственной вещью; мы справедливо можем сказать, что все они существуют в один и тот же момент времени. Вопрос о том, есть ли в ангелах и духах нечто аналогичное распространенности, выше моего понимания. Наш разум и наше понимание соответствуют нашему самосохранению и целям нашего собственного существования, но не приноровлены ко всей действительности и всему тому, что в ней существует. Поэтому постигнуть какое-нибудь существование или получить идею какого-нибудь реального существа, лишенного какого бы то ни было протяжения, для нас, быть может, почти так же трудно, как получить идею какого-нибудь реального существа, лишенного всякой продолжительности. Потому мы и не знаем, в каком отношении стоят духи к пространству и как они в нем соотносятся друг с другом. Все, что мы знаем,- это то, что каждая единичная вещь имеет свой надлежащий участок пространства соответственно протяжению своих плотных частиц и исключает поэтому все другие тела из этого своего участка пространства, пока она там остается.
12. Продолжительность никогда не имеет двух частей, наличествующих вместе, у распространенности все части находятся вместе. Продолжительность и се часть - время есть идея исчезающего расстояния, две части которого никогда не существуют вместе, но следуют друг за другом в последовательности, между тем как распространенность есть идея пребывающего расстояния, все части которого существуют совместно и не способны к следованию друг за другом. И поэтому хотя мы и не можем постигнуть какую-нибудь продолжительность без последовательности и соединить в своих мыслях, что в настоящий момент вещь существует завтра или что она владеет сразу более чем данным моментом продолжительности, однако мы можем представить себе вечную продолжительность всемогущего совершенно отличною от продолжительности человека или всякого другого конечного существа, ибо человек не охватывает своим знанием или способ-
==254
ностью всего прошедшего или будущего; его мысли относятся только ко вчерашнему дню и не знают, что принесет с собой завтрашний . Того, что раз прошло, он никогда не может вернуть; того, что еще должно прийти, он не может сделать настоящим. То же самое, что о человеке, можно сказать о всех конечных существах: пусть они даже намного превосходят человека знанием и способностью, они не выше самой низкой твари в сравнении с самим богом. Конечное, какой бы ни было величины, не выдерживает никакого сравнения с бесконечным. Так как бесконечная продолжительность бога сопровождается бесконечным знанием и бесконечной силой, он видит все прошедшее и будущее, и то и другое отстоят от его знания не больше, отдалены от его взора не дальше настоящего: все находится под одним и тем же взором, и нет вещи, которую он не мог бы заставить существовать в любой момент, когда хочет. Так как существование всех вещей зависит от его доброй воли, все вещи существуют всякий момент, когда он считает нужным их существование. Итак, распространенность и продолжительность взаимно обнимают и охватывают друг друга: каждая часть пространства находится в каждой части продолжительности и каждая часть продолжительности - в каждой части распространенности. Мне кажется, такое сочетание двух различных идей едва ли можно найти во всем том великом разнообразии, которое мы постигаем или можем постигнуть; это может служить предметом дальнейшего размышления.
Глава шестнадцатая О ЧИСЛЕ
1. Число есть простейшая и наиболее общая идея. Среди всех наших идей нет идеи более простой и проникающей в ум большим числом путей, нежели идея единицы, или единства. В ней нет и тени разнообразия или сложности. Ее приносит с собой каждый объект, с которым имеют дело наши чувства, каждая идея в нашем разуме, каждая мысль в нашем уме. Она поэтому есть наиболее близкая нашему мышлению и по своей согласованности со всеми другими предметами наиболее общая наша идея. Число приложимо к людям, ангелам, действиям, мыслям, ко всему, что существует или что можно представлять себе.
2. Модусы числа образуются сложением. Повторяя эту идею в уме и складывая эти повторения, мы приходим к
==255
сложным идеям ее модусов. Так, прибавляя один к одному, мы получаем сложную идею пары; складывая двенадцать единиц, получаем сложную идею дюжины; так же получается двадцать, миллион и всякое другое число.
3. Каждый модус отличается от другого. Простые модусы числа из всех других суть наиболее отличающиеся друг от друга. Самое незначительное изменение - разность на единицу - делает каждое сочетание совершенно отличным как от самого близкого ему числа, так и от самого далекого. Два так же отличается от одного, как и двести; идея двойки так же отлична от идеи тройки, как величина всей Земли от величины щепотки. Не так бывает с другими простыми модусами, в которых нам не так легко, а иногда, быть может, и невозможно различить две смежные идеи, которые, однако, в действительности различаются. Кто попробует найти разницу между белым цветом этой бумаги и белым цветом ближайшего к нему оттенка? Кто может образовать различные идеи каждого самого малого увеличения протяженности?
4. Поэтому доказательства при помощи чисел суть самые точные. Ясность и определенность каждого модуса числа, отличающегося от всех других, даже самого ближайшего, заставляет меня считать доказательства при помощи чисел если не более очевидными и точными, нежели геометрические, то более общими по своему употреблению и более определенными по своему применению. Ибо идеи чисел более отчетливы и различимы, нежели идеи протяженности, в которых не так легко подметить или измерить всякое равенство и превышение; ибо наши мысли о пространстве не могут прийти к какой-нибудь определенной малой величине, за пределы которой идти нельзя, как, например, к единице, и потому не могут быть выявлены величина или соотношение какого-нибудь очень незначительного превышения. В числах, напротив, они совершенно ясны. Здесь, как уже было сказано, 91 отличается от 90 не меньше, чем от 9000, хотя 91 - ближайшее непосредственное превышение 90. Не так с протяженностью, где то, что лишь немного больше фута или дюйма, нельзя отличить от эталона фута или дюйма. Из линий, которые кажутся одинаковыми, одна может быть длиннее другой на часть, не могущую быть выраженной в числах. Никто не может указать угол, который был бы минимально больше прямого.
5. Имена необходимы для чисел. Как уже было сказано, повторением идеи единицы и соединением ее с другой
==256
единицей мы образуем из них одну совокупную идею, обозначенную именем <два>. И кто может так действовать и идти таким образом вперед, все время прибавляя по одной единице к последней полученной им совокупной идее числа, и дает ей имя, тот может считать или получать идеи для отличных друг от друга совокупностей единиц до тех пор, пока у него будет ряд имен для следующих чисел и память для удержания этого ряда с его различными именами. Ибо всякий счет есть не что иное, как постоянное прибавление по единице и сообщение каждой сумме, как охватываемой одной идеей, нового или особого названия или знака, чтобы посредством этого узнать ее (его) среди предыдущих и следующих чисел и отличать от каждого меньшего или большего множества единиц. Так что кто может прибавить единицу к единице, потом к двум и идти таким образом вперед в своем счете, все время применяя особые названия для каждого возрастания; кто может, с другой стороны, посредством вычитания единицы от каждой суммы идти назад и уменьшать их, тот способен в пределах своего языка получить все идеи чисел или те идеи, для которых у него есть имена, хотя, быть может, и не больше. Так как различные простые модусы чисел в нашем уме есть лишь столько-то сочетаний единиц, не заключающих в себе никакого разнообразия и различающихся только большей или меньшей величиной, то для каждого отдельного сочетания имена, или знаки, по-видимому, более необходимы, чем для других видов идей, ибо без таких имен, или знаков, мы едва ли можем с пользой употреблять числа при счете, особенно там, где сочетание составилось из большого числа единиц. Если соединить единицы и не дать имени, или знака, для различения именно этого сочетания, то трудно будет предохранить их от смешения в кучу.
6. Вот почему, на мой взгляд, некоторые жители Америки, с которыми я разговаривал (и которые в других отношениях обладали довольно хорошими умственными способностями), в своем счете никоим образом не могли, подобно нам, дойти до тысячи и не имели отдельной идеи этого числа, хотя очень хорошо считали до двадцати, ибо их язык, скудный, приспособленный к немногим потребностям их бедной и простой жизни, не знакомой ни с торговлей, ни с математикой, не имел слов для обозначения тысячи. И когда с ними беседовали о таких больших числах, то для выражения большого количества, которого они не могли счесть, они указывали на свои волосы на
==257
голове. Эта неспособность их, я полагаю, происходила от недостатка названий. У племени туупинамбо не было имен для чисел выше пяти; все числа больше пяти они выражали, показывая на свои пальцы и на пальцы других присутствующих лиц. Да и мы сами, несомненно, могли бы точно считать, [пользуясь] словами гораздо дальше, чем считаем обычно, если бы придумали хотя бы еще несколько пригодных для обозначения чисел наименований. Между тем при нашем теперешнем способе счисления, когда мы выражаем большие числа миллионами миллионов миллионов и т. д., трудно, не вызывая путаницы, идти дальше восемнадцати или, самое большее, двадцати четырех десятичных разрядов. А чтобы показать, как много особые имена способствуют хорошему счету или приобретению полезных идей чисел, предположим, что все нижеследующие цифры суть знаки одного-единственного числа 52:
Нонильоны 857 324 Октильоны 162 486 Септильоны 345 896 Секстильоны 437 916 Квинтильоны 423 147
Квадрильоны 248 106 Триллионы 235 421 Биллионы 261 734 Миллионы 368 149 Единицы 623 137
Обычный способ названия этого числа словами будет состоять в частом повторении миллионов миллионов миллионов миллионов миллионов миллионов миллионов, т. е. наименования второй шестерки цифр. Этим путем очень трудно получить сколько-нибудь ясное понятие об этом числе. Я предоставляю другим рассмотреть, не легче ли будет различать при исчислении такие и, быть может, гораздо большие числа, а идеи их не легче ли будет приобретать нам самим и выражать их более понятно для других, если мы каждой шестерке цифр будем давать новые и идущие по порядку наименования. Я говорю об этом только для того, чтобы показать, как необходимы для счисления особые названия, и вовсе не думаю вводить новые названия собственного изобретения.
7. Почему дети не начинают считать раньше? Таким образом, дети или за неимением названий для обозначения различных числовых разрядов, или вследствие отсутствия способности соединять разрозненные идеи в сложные, приводить их в стройный порядок и удерживать их в памяти, как это необходимо для счета, начинают считать не очень рано и успевают в этом не особенно много и не
==258
очень хорошо довольно долго после того, как приобрели большой запас других идей. Можно часто наблюдать, как они сравнительно неплохо говорят и рассуждают и имеют очень ясные представления о разных других вещах до того, как умеют считать до двадцати. А некоторые, будучи вследствие недостатка памяти не в состоянии запоминать различные сочетания чисел вместе с их названиями в их определенном порядке, связь такого длинного ряда числовых разрядов и их соотношение, даже всю свою жизнь не могут правильно считать далее скромного ряда чисел. Кто захочет счесть двадцать или получить идею этого числа, тот должен знать, что ему предшествует девятнадцать, а также знать особые названия, или знаки, каждого из них в их определенном порядке. Где этого нет, там образуется пробел, цепь обрывается и дальнейший счет невозможен. Таким образом, для правильного счета требуется: 1) чтобы ум тщательно различал две идеи, отличающиеся друг от друга только прибавлением или вычитанием одной единицы; 2) чтобы он удерживал в памяти названия, или знаки, различных сочетаний от единицы до данного числа, не спутанно и не наобум, а в том строгом порядке, в каком одно число следует за другим. Если промахнуться в чем-либо одном, все дело счета рушится и остается только смутная идея множества, но не получается идей, необходимых для точного счисления.
8. Число измеряет все измеримое. Далее относительно числа следует заметить, что ум пользуется числом при измерении всех поддающихся измерению вещей, главным образом протяжения и продолжительности; даже наша идея бесконечности того и другого, по-видимому, не что иное, как бесконечность числа. Действительно, что такое, в самом деле, наши идеи вечности и необъятности, как не повторные прибавления определенных идей воображаемых частей продолжительности и распространенности в соединении с бесконечностью числа, в которой мы не можем доходить до предела прибавления? Ибо число совершенно очевидно доставляет нам неисчерпаемый запас всех наших других идей, что ясно каждому. Какое бы большое число мы ни соединили в одной сумме, это множество, как бы велико оно ни было, ни на йоту не уменьшает возможности прибавлять к нему и не приближает нас к концу неисчерпаемого запаса чисел, где всегда остается так же много для прибавления, как если бы ни одно не было отнято. И мне думается, что именно это бесконечное сложение, или слагаемость (если кому
==259
нравится больше последнее слово), чисел, столь очевидное для ума, дает нам наиболее ясную и четкую идею бесконечности. О последней подробнее в следующей главе.
Глава семнадцатая О БЕСКОНЕЧНОСТИ
1. Первоначально намеревались приписать бесконечность пространству, продолжительности и числу. Тому, кто хочет знать, какова та идея, которой мы даем имя <бесконечность>, лучше всего это сделать, рассмотрев, чему бесконечность приписывается умом всего непосредственнее и как ум приходит к ее образованию.
Мне кажется, что конечное и бесконечное рассматриваются умом как модусы количества и приписываются сначала при их первом употреблении только тем вещам, которые состоят из частей и могут посредством прибавления или вычитания самых малых частей увеличиваться и уменьшаться. Таковы идеи пространства, продолжительности и числа, которые мы рассмотрели в предыдущих главах. Поистине мы не можем не быть уверенными в непостижимой бесконечности великого бога, из которого и от которого всё. Но когда мы в своем слабом и ограниченном мышлении прилагаем свою идею бесконечности к этому первому и верховному существу, мы делаем это прежде всего по отношению к его продолжительности и вездесущности, а по отношению к его могуществу, мудрости, доброте и другим атрибутам, которые воистину неистощимы, непостижимы и т. д., мы делаем это, на мой взгляд, скорее в переносном смысле. Ибо, когда мы называем их бесконечными, под идеей этой бесконечности мы разумеем лишь такую идею, с которой связано размышление и представление о числе или распространенности действий и объектов божьей силы, мудрости и доброты, причем, какими бы великими или многочисленными мы ни предполагали эти действия и объекты и сколько бы мы. ни умножали их в своих мыслях, атрибуты бога всегда будут превосходить и превышать их со всей бесконечностью бесконечного числа. Я не претендую на то, чтобы указать, каковы эти атрибуты в боге, который бесконечно выше досягаемости наших ограниченных способностей; они, без сомнения, заключают в себе все возможное совершенство. Но таков, говорю я, наш путь их постижения, и таковы наши идеи их бесконечности.
==260
2. Идея конечного приобретается легко. Определив, что ум рассматривает конечное и бесконечное как модификации распространенности и продолжительности, мы должны затем исследовать, как ум приходит к ним. Что касается идеи конечного, она не представляет большой трудности. Очевидные части протяженности, воздействующие на наши чувства, приносят с собой в ум идею конечного; обычные промежутки последовательности, которыми мы измеряем время и продолжительность, такие, как часы, дни и годы, суть ограниченные величины. Трудность представляет то, как мы приходим к беспредельным идеям вечности и необъятности, ибо предметы, с которыми мы имеем дело, даже приблизительно или относительно не достигают таких величин.