3. Как мы приходим к идее бесконечности. Всякий, у кого есть идея какой-нибудь установленной пространственной величины, например фута, знает, что он может повторить эту идею и, присоединяя ее к прежней, образовать идею двух футов, а посредством прибавления к ним третьей - идею трех футов и так далее, никогда не приходя к концу в своих прибавлениях или этой же самой идеи фута, идя, если угодно, двойного фута, или всякой другой идеи любой длины - мили, земного диаметра, диаметра Orbis magnus 53. Какую бы из этих идей ни взял он и сколько бы раз ни удваивал или увеличивал иным образом, он увидит после непрерывного мысленного удваивания и какого угодно увеличения своей идеи, что у него оснований остановиться не больше и он ни на йоту не ближе к концу такого прибавления, чем при самом начале. И из того, что способность увеличения его идеи пространства путем дальнейших прибавлений остается все такой же, он выводит идею бесконечного пространства.
4. Наша идея пространства беспредельна. Вот, кажется мне, путь, которым ум приобретает идею бесконечного пространства. Совершенно другой вопрос, имеет ли ум идею того, что такое беспредельное пространство действительно существует, потому что наши идеи не всегда являются доказательством того, что вещи существуют. Все же, раз зашла об этом речь, я, полагаю, могу сказать, что мы склонны считать это пространство само по себе действительно беспредельным и что к этой мысли нас естественно приводит сама собой идея пространства, или распространенности. В самом деле, рассматриваем ли мы идею пространства как протяженность тела или как нечто отдельно существующее без всякой занимающей его твердой
==261
материи (у нас не только есть такая идея пустого пространства, но, исходя из движения тела, я, мне кажется, доказал необходимость его существования), невозможно, чтобы ум когда-нибудь нашел или предположил какой-либо конец или остановился где-нибудь в своем продвижении в это пространство, как бы далеко ни простирал он свои мысли, Никакие телесные границы, хотя бы алмазные стены, не могут положить конец дальнейшему движению ума в пространство и протяженность, скорее они облегчают и усиливают движение ума, ибо, поскольку тело простирается, постольку никто не может и сомневаться в протяженности. Если же мы достигаем самых крайних границ тела, то что может там быть преградой и убедить ум, что он у конца пространства, когда он видит, что это не так, тем более если он убежден, что и само тело может двигаться в дальнейшее] пространство? Если для движения тел необходимо, чтобы здесь между телами существовало пустое пространство, как бы незначительно оно ни было, и если тело может двигаться в этом пустом пространстве или через него (более того, материальные частицы только и могут двигаться, что в пустом пространстве), то всегда будет ясно и очевидно, что в пустом пространстве за крайними пределами тела существует та же самая возможность для тела двигаться, что и в пустом пространстве, находящемся между телами. Так как идея пустого чистого пространства и в пределах, и за пределами всех тел совершенно одна и та же, различаясь не характером, а объемом, и так как ничто не мешает телу двигаться в пространстве, то где бы ум мысленно ни занял место, между телами или далеко от них всех, нигде в этой однообразной идее пространства он не может найти никакого предела, никакого конца и, таким образом, необходимо должен сделать заключение, что оно по самой природе и идее каждой части его действительно является бесконечным.
5. Такова же идея продолжительности. Как благодаря обнаруживаемой у себя способности повторять сколько угодно раз любую идею пространства мы приобретаем идею необъятности, точно так же благодаря своей способности повторять идею продолжительности любой величины, имеющуюся у нас в уме, со всем бесконечным прибавлением числа мы приходим к идее вечности. Ибо мы замечаем, что при таком повторении идей так же не можем прийти к концу, как и при повторении числа; каждый видит, что он этого не может. Опять-таки имеется ли у нас идея вечности - это один вопрос, но совершенно другой вопрос -
==262
знать, есть ли реальное существо, продолжительность которого была бы вечна. Что касается этого вопроса, я утверждаю, что всякий, кто признает что-нибудь существующим теперь, необходимо должен прийти к чему-нибудь вечному. Но так как я говорил об этом в другом месте 54, то здесь об этом больше ничего не скажу и перейду к некоторым другим соображениям относительно нашей идеи бесконечности.
6. Почему другие идеи не допускают бесконечности? Если действительно наша идея бесконечности вытекает из замечаемой у нас способности повторять без конца свои идеи, то могут спросить, почему мы не приписываем бесконечности другим идеям точно так же, как идеям пространства и продолжительности. Ведь они могут быть повторены в нашем уме так же легко и так же часто, как и те, а между тем никто никогда не думает о бесконечной сладости или бесконечной белизне, хотя идею сладкого или белого можно повторять столь же часто, сколько идею ярда или дня. Я отвечаю на это: все те идеи, которые признаются имеющими части и могут увеличиваться посредством прибавления каких угодно равных илр! меньших частей, дают нам при их повторении идею бесконечности, потому что с этим бесконечным повторением продолжается непрерывное увеличение, которому не может быть конца. Не то с другими идеями. Прибавление к самой большой идее протяженности или продолжительности, какая есть у меня в настоящее время, самой малой части уже составляет увеличение. Но если я к самой совершенной своей идее самой белой белизны прибавлю идею меньшей или равной белизны (идею большей белизны, чем имеющуюся у меня, я не могу прибавить), то это не составит никакого увеличения и нисколько не расширит моей идеи: поэтому различные идеи белизны и т. в. называются степенями. Идеи, состоящие из частей, способны увеличиваться посредством каждого прибавления самой малой части; но, если вы возьмете идею белого, которую доставил вашему зрению выпавший вчера снег, и другую идею белого от снега, который вы видите сегодня, и сведете их вместе в уме своем, они как бы объединятся и сольются в одну, а идея белизны совсем не увеличится; а если мы прибавим меньшую степень белизны к большей, мы не только не увеличим,, а, напротив, уменьшим последнюю. Идеи, не состоящие из частей, не могут быть увеличены в каком угодно нам размере или простираться за пределы того, что они получили от чувств людей; между тем пространство,
==263
продолжительность и число, могущие быть увеличены через повторение, оставляют в уме идею бесконечного простора для большего, и мы не можем представить себе, чтобы где-нибудь была преграда для дальнейшего прибавления или движения вперед. Таким образом, только эти идеи приводят наш ум к мысли о бесконечности.
7. Разница между бесконечностью пространства и бесконечным пространством. Хотя наша идея бесконечности вытекает из созерцания величины и бесконечного нарастания величины, которое ум может произвести через повторные прибавления каких угодно частей, однако, я полагаю, мы вызываем большую путаницу в наших мыслях, когда соединяем бесконечность с какой-нибудь предполагаемой идеей величины, которую ум, как считают, может иметь, и, таким образом, начинаем говорить или рассуждать о бесконечной величине, например о бесконечном пространстве или бесконечной продолжительности. В самом деле, наша идея бесконечности есть, на мой взгляд, бесконечно возрастающая идея. Но идея любой величины, которая имеется в уме, в это время сама себя ограничивает (как бы ни была она велика, она не может быть больше того, что она есть), и присоединять к ней бесконечность - значит прибавлять постоянную меру к возрастающей величине. Поэтому я считаю далеко не излишней тонкостью свое утверждение, что мы должны старательно различать между идеей бесконечности пространства и идеей бесконечного пространства 55. Первая есть не что иное, как предполагаемое бесконечное движение ума через повторение каких ему угодно пространственных идей. Но действительно иметь в уме идею бесконечного пространства - значит предполагать, что ум уже прошел и действительно обозревает все те повторяемые одна за другой идеи пространства; но бесконечное повторение, однако, никогда не может полностью представить его уму. А в этом заключается очевидное противоречие.
8. У нас нет идеи бесконечного пространства. Сказанное, быть может, станет немного яснее, если мы рассмотрим это на числах. Бесконечность чисел, сложению которых (это каждый знает) нет предела, представляется ясной всякому, кто размышляет об этом, но, как бы ясна ни была идея бесконечности числа, нет ничего очевиднее нелепости действительной идеи какого-либо бесконечного числа. Как бы ни были велики находящиеся у нас в уме положительные идеи пространства, продолжительности или числа, они всегда остаются конечными; но, когда мы представим
==264
себе неисчерпаемый остаток, у которого мы устраняем всякие границы и в котором предоставляем уму бесконечное движение мысли вперед, так что оно никогда не завершает идеи, тогда мы и получаем идею бесконечности. Хотя эта идея кажется довольно ясной, когда мы усматриваем в ней лишь отрицание какого-либо конца, однако если бы мы хотели составить в уме своем идею бесконечного пространства или бесконечной продолжительности, она была бы очень смутной и неясной, потому что состоит из двух совершенно различных, если не сказать несовместимых, частей. Пусть кто-нибудь составит в уме идею какого угодно пространства или числа; как бы ни была она велика, очевидно, что ум останавливается на ней и ограничивается ею, но именно это и противоречит идее бесконечности, состоящей в предполагаемом бесконечном движении вперед. Потому-то, думается мне, мы легко и сбиваемся с толку, когда начинаем рассуждать и спорить о бесконечном пространстве или бесконечной продолжительности и т. д. Именно потому, что мы не замечаем фактической несовместимости частей такой идеи, одна сторона ее всегда запутывает какие бы то ни было выводы из другой ее стороны. Так натолкнулся бы на затруднения всякий, кто вздумал бы исходить в своих доводах из идеи <движения, не идущего вперед>, которая не лучше идеи <движения в покое>. Совершенно такой же мне кажется идея бесконечного пространства или (что то же самое) числа, т. е. такого пространства или числа, которое ум действительно имеет, обозревает и которым он ограничивается, и такого пространства и числа, которого он в постоянном и бесконечном увеличении и движении вперед никогда не может достигнуть в своей мысли. В самом деле, как бы ни была велика в моем уме идея пространства, она не больше, чем она есть в тот момент, когда я ее имею, хотя в следующий момент я могу удвоить ее и так далее in infinitum. Ибо только то бесконечно, что не имеет пределов, и только та идея есть идея бесконечности, в которой наши мысли не могут найти таковых.
9. Число дает нам самую ясную идею бесконечности. Но из всех других идей, как я уже говорил, число, на мой взгляд, доставляет нам самую ясную и наиболее определенную идею бесконечности, какую только мы можем иметь. Когда ум желает иметь идею бесконечности даже пространства и продолжительности, он пользуется идеями и повторениями чисел, например миллионов миллионов миль или лет, представляющими собой отличные
==265
друг от друга идеи и лучше всего предохраняемые числом от сваливания в беспорядочную кучу, в которой ум теряется. И после прибавления скольких угодно миллионов и тому подобных известных величин пространства или продолжительности самая ясная идея бесконечности, какую только может приобрести ум, есть неясный, непостижимый остаток бесконечного множества чисел, которые еще можно прибавлять,- остаток, который не дает надежды на остановку или предел.
10. Наши различные представления о бесконечности числа, продолжительности и распространенности. Быть может, нам станет немного более понятной наша идея бесконечности и обнаружится, что она есть не что иное, как бесконечность числа, приложимая к определенным частям, ясные идеи которых есть в нашем уме, если мы обратим внимание на то, что обычно мы не считаем число бесконечным, между тем как склонны считать такими продолжительность и протяженность. Происходит это оттого, что в случае чисел мы находимся, так сказать, у одного конца: так как в числе ничто не меньше единицы, то мы останавливаемся здесь и находимся у какого-то конца; но в сложении или увеличении чисел мы не можем установить никаких пределов. Таким образом, число подобно линии, один конец которой имеется у нас, а другой растягивается далеко за пределы всего постижимого нами. Не то с пространством и продолжительностью. Продолжительность мы рассматриваем так, как если бы линия числа была растянута в оба направления непостижимой, неопределенной и бесконечной длины. Это ясно для всякого, кто только поразмыслит о своем понимании вечности; я полагаю, всякий найдет при этом, что она есть не что иное, как эта же бесконечность числа, обращенная в обе стороны, a parte ante и a parte post 56, как говорят. При рассмотрении вечности a parte ante разве мы не делаем лишь следующее: начиная от себя, от данного времени, в котором пребываем, мы повторяем в уме идеи годов или веков, или каких-либо других определенных частей прошедшей продолжительности, намереваясь двигаться дальше при таком прибавлении, [используя] всю бесконечность чисел. При рассмотрении вечности a parte post мы точно таким же образом начинаем от себя и считаем линию числа умноженной через посредство будущих периодов, все время, как и раньше, растягивая эту линию. Обе линии вместе и составляют ту бесконечную продолжительность, которую мы называем вечностью и которая кажется бесконечной при
==266
обращении нашего взора в том или другом направлении, вперед или назад, потому что мы все время обращаем в этом направлении бесконечный конец числа, т. е. возможность постоянно прибавлять еще.
11. То же самое и с пространством. Как бы помещая себя в его центре, мы по всем направлениям проводим нескончаемые линии чисел, потом, отсчитывая от себя по какому-нибудь направлению ярд, милю, диаметр Земли, или Orbis magnus при помощи бесконечного числа, сколько угодно раз прибавляем к ним другие и, имея не больше основания ставить пределы повторению этих идей, чем тому, чтобы ставить пределы числу, получаем не поддающуюся определению идею необъятности.
12. Бесконечная делимость. И поскольку ни в какой частице материи наши мысли никогда не могут дойти до предельной делимости, здесь тоже существует для нас явная бесконечность. Это тоже бесконечность числа, но с тем различием, что в прежних исследованиях - о бесконечности пространства и продолжительности - мы пользовались только прибавлением чисел, между тем как бесконечность подобна делению единицы на ее доли, которое ум так же может продолжать in infinitum, как при прежних прибавлениях, так как на деле она состоит только в прибавлении все новых чисел, хотя прибавление в одном случае так же мало может дать нам положительную идею бесконечно большого пространства, как деление в другом случае - идею бесконечно малого тела. Я мог бы сказать, что наша идея бесконечности есть идея возрастающая и ускользающая от нас, всегда в беспредельном движении вперед, которое нигде не может остановиться.
13. Нет положительной идеи бесконечного. Полагаю, трудно сыскать человека столь глупого, который решился бы утверждать, что у него есть положительная идея действительно бесконечного числа, бесконечность которого состоит исключительно в возможности постоянного прибавления любого сочетания единиц к любому прежнему числу в течение какого угодно времени и сколько угодно раз. То же самое с бесконечностью пространства и продолжительности: и здесь возможность всегда предоставляет уму простор для бесконечных прибавлений; тем не менее находятся такие, кто воображает, будто у них есть положительные идеи бесконечной продолжительности и бесконечного пространства. На мой взгляд, для опровержения такой положительной идеи бесконечного достаточно было бы спросить, можно ли прибавлять к такой идее или
==267
нет, что легко показало бы заблуждение относительно такой положительной идеи. Я думаю, у нас не может быть никакой положительной идеи пространства или идеи продолжительности, которая не была бы составлена из повторных чисел футов или ярдов, дней или лет и соразмерно с этими обычными мерами, идеи которых мы имеем в своем уме и по которым мы судим о размерах такого рода величин. И так как идея бесконечного пространства или бесконечной продолжительности необходимо должна состоять из бесконечных частей, то она может иметь· только бесконечность числа, всегда способную к дальнейшему прибавлению; но действительно положительной идеи бесконечного числа нет. Кажется, очевидно, что сложение конечных вещей (а таковы все величины, положительные идеи которых есть у нас) никогда не порождает идеи бесконечного иначе, нежели это делает число; а последнее, состоя из прибавлений друг к другу конечных единиц, вызывает идею бесконечного только благодаря тому, что мы способны постоянно увеличивать сумму и делать такие же прибавления, ни на йоту не приближаясь к концу этого процесса.