Значимые фигуры. Жизнь и открытия великих математиков - Иэн Стюарт 3 стр.


Земля была плодородна, местные жители дружелюбны, и вскоре Сиракузы стали самым процветающим и могущественным греческим городом на всем Средиземноморье. В трактате «Псаммит», или «Исчисление песчинок», Архимед говорит, что его отцом был астроном Фидий. Если верить «Сравнительным жизнеописаниям» Плутарха, то он был дальним родственником тирана Сиракуз Гиерона II. Считается, что в юности Архимед учился в египетском городе Александрия, расположенном в дельте Нила, где встречался с Кононом Самосским и Эратосфеном Киренским. Это подтверждают, в частности, утверждения Архимеда о том, что Конон был его другом; кроме того, вводные части его книг «Послание к Эратосфену о методе» и «Задача о быках» обращены к Эрастофену.

О смерти Архимеда тоже ходят легенды, в свое время мы доберемся и до них.

* * *

Математическая репутация Архимеда зиждется на книгах, которые уцелели и дошли до нас – все в более поздних копиях. «Квадратура параболы», написанная в форме письма к другу Архимеда Досифею, содержит 24 теоремы о параболах, последняя из которых дает площадь параболического сегмента, выраженную через площадь связанного с ним треугольника. Парабола вообще занимает видное место в трудах Архимеда. Это один из типов конических сечений – семейства кривых, игравшего значительную роль в греческой геометрии. Чтобы получить коническое сечение, нужно разрезать плоскостью двойной конус, образованный при соединении вершинами двух одинаковых конусов. Существует три основных типа конических сечений: эллипс – замкнутый овал, парабола – U-образная кривая и гипербола – две U-образные кривые, расположенные «спина к спине».

число черных быков + число рыжих быков и следует продолжение:

Сколько у Солнца быков, чужестранец, коль точно ты скажешь,

Нам раздельно назвав тучных быков число,

Также раздельно коров, сколько каждого цвета их было,

Не назовет хоть никто в числах невеждой тебя,

Все ж к мудрецам причислен не будешь. Учти же, пожалуй,

Свойства какие еще Солнца быков числа.

число белых быков + число черных быков = квадратное число,

число пестрых быков + число рыжих быков = треугольное число.

Если ты найдешь, чужестранец, умом пораскинув,

И сможешь точно назвать каждого стада число,

То уходи, возгордившись победой, и будет считаться,

Что в этой мудрости ты все до конца превзошел.

Квадратные числа – это 1, 4, 9, 16 и т. д., получаются они при умножении натурального числа на само себя. Треугольные числа – это 1, 3, 6, 10 и т. д., образуемые сложением последовательных натуральных чисел, к примеру, 10 = 1 + 2 + 3 + 4. Эти условия образуют то, что мы сегодня называем системой диофантовых уравнений в честь Диофанта Александрийского, который написал о них около 250 г. в книге «Арифметика». Решение должно даваться в целых числах, поскольку вряд ли у бога Солнца в стаде ходит половинка коровы.

Первый набор условий дает бесконечное число возможных решений, в наименьшем из которых божественное стадо насчитывает 7 460 514 черных быков и сравнимое число остальных животных. Дополнительные условия позволяют выбрать среди этих решений и ведут к тому типу диофантовых уравнений, которые известны как уравнения Пелля (глава 6). Здесь нужно найти целые x и y, такие что nx2 + 1 = y2, где n – заданное целое число. К примеру, при n = 2 уравнение принимает вид 2x2 + 1 = y2, а его решениями являются пары чисел x = 2, y = 3 и x = 12, y = 17. В 1965 г. Хью Уильямс, Р. Герман и Чарльз Зарнке при помощи двух компьютеров фирмы IBM нашли наименьшее решение, удовлетворяющее двум дополнительным условиям. Это решение приблизительно равно 7, 76 × 10206544.

Архимед никак не мог найти это число вручную, к тому же нет никаких свидетельств того, что он вообще имеет какое-то отношение к этой задаче, кроме того что его имя фигурирует в названии стихотворения. Задача о быках до сих пор привлекает внимание специалистов по теории чисел и способствует получению новых результатов, к примеру решая уравнения Пелля.

* * *

Исторических данных о жизни Архимеда почти нет, однако о его смерти мы знаем чуть больше – если, конечно, считать, что хотя бы одна из дошедших до нас легенд соответствует истине. Но можно с уверенностью предположить, что хотя бы зерно правды в них присутствует.

Во время Второй Пунической войны, около 212 г. до н. э., римский генерал Марк Клавдий Марцелл осадил Сиракузы и взял город после двух лет осады. Плутарх рассказывает, что во время взятия города пожилой Архимед рассматривал какой-то чертеж на песке. Генерал послал солдата, чтобы тот пригласил Архимеда на встречу с ним, но математик отказался пойти, сказав, что не закончил работу над задачей. Солдат вышел из себя и убил Архимеда мечом; рассказывают, что последними словами мудреца были: «Не тронь моих чертежей!» Зная математиков, я полагаю, что такая ситуация вполне возможна, но Плутарх приводит и другой вариант истории, в которой Архимед пытается сдаться случайному солдату, а тот, решив, что математические инструменты в руках ученого стоят дорого, убивает его, чтобы ими завладеть. В обоих вариантах легенды Марцелл был очень недоволен смертью столь уважаемого гения механики.

Назад Дальше