Стратегические игры. Доступный учебник по теории игр - Авинаш Диксит 9 стр.


В главе 16 и главе 17 представлены механизмы распределения ценных экономических ресурсов: глава 16 посвящена аукционам, а глава 17 – процессу переговоров. В описании аукционов мы акцентируемся на роли информации и отношения к риску в разработке оптимальных стратегий для покупателей и продавцов. Кроме того, мы воспользуемся возможностью применить теорию игр к самому новому типу аукционов – интернет-аукционам. И наконец, в главе 17 рассматриваются переговоры в кооперативной и некооперативной среде.

Поскольку в книге содержится большой объем материала, как читателям и преподавателям с профильными интересами выбрать те главы, которые им нужны? В главах 3−7 представлены ключевые теоретические концепции, которые понадобятся на протяжении оставшейся части книги. Материал главы 9 и главы 10 также важен для понимания общих классов игр и рассматриваемых стратегий. Все остальные главы книги можно выбирать в соответствии со своими интересами. Например, в разделе 1 главы 5, разделе 7 главы 7, разделе 5 главы 10 и разделе 7 главы 12 изложены более сложные темы. Эти разделы могут заинтересовать читателей с более серьезной научной и математической подготовкой, а специалисты в области общественных и гуманитарных наук могут их пропустить без потери целостности смысла. В главе 8 затронут важный вопрос о наличии на практике в большинстве игр неполной или асимметричной информации, а попытки игроков манипулировать информацией – важнейший аспект многих стратегических взаимодействий. Однако концепции и методы анализа информационных игр гораздо сложнее. Учитывая это, некоторые читатели и преподаватели могут изучить только примеры, объясняющие основные идеи сигнализирования и скрининга, и опустить остальное. Тем не менее, учитывая значимость этой темы, мы разместили посвященную ей главу в самом начале третьей части книги. Глава 9 и глава 10 – ключевые для понимания многих явлений реального мира, поэтому большинство преподавателей захотят включить их в свои учебные курсы, однако раздел 5 главы 10 содержит более сложные математические выкладки и его можно пропустить. В главе 11 и главе 12 рассматриваются игры с участием большого количества игроков. В главе 11 акцент сделан на социальных взаимодействиях, а в главе 12 – на эволюционной биологии. Затронутые в главе 12 вопросы могут представлять наибольший интерес для биологов, однако аналогичные темы появляются и в общественных науках, поэтому студенты, изучающие их, должны поставить перед собой цель вникнуть в суть изложенных концепций, даже если они упустят детали. Глава 13 наиболее важна для студентов, изучающих теорию бизнеса и теорию организации. Глава 14 и глава 15 посвящены вопросам политологии (международная дипломатия и выборы), а глава 16 и глава 17 – вопросам экономики (аукционы и переговоры). Для более специализированных учебных курсов можно выбрать одну из тем, обсуждаемых в главах 11−17, и подробно остановиться на концепциях, которые в них рассматриваются.

Чем бы вы ни занимались – математикой, биологией, экономикой, политикой, историей, социологией или другими науками, – теория и примеры стратегических игр будут стимулировать вас и станут вызовом вашему интеллекту. Мы желаем вам насладиться этим предметом в процессе его изучения или преподавания.

Резюме

Стратегические игры отличаются от индивидуального принятия решений наличием значимых взаимодействий между игроками. Игры можно классифицировать по нескольким категориям, таким как время игры, общие или противоречащие друг другу интересы игроков, частота взаимодействия между игроками, объем доступной игрокам информации, типы правил и целесообразность согласованных действий.

Знание терминологии имеет решающее значение для анализа структуры игры. В распоряжении игроков есть стратегии, которые обеспечивают различные исходы игры с разными выигрышами. Последние включают в себя все, что важно для игрока, и рассчитываются методом вероятностного среднего, или математического, ожидания, если исход игры носит случайный характер или связан с определенным риском. Предполагается, что рациональность (или последовательное поведение) свойственна всем игрокам, которые должны знать все соответствующие правила поведения. Равновесие в игре возникает в случае использования всеми игроками стратегий, представляющих собой наилучший ответ на стратегии других игроков. Некоторые классы игр позволяют учиться на собственном опыте и анализировать динамическое движение к равновесию. Изучение поведения в реальных игровых ситуациях предоставляет дополнительную информацию об эффективности данной теории.

Теорию игр можно использовать для объяснения, прогнозирования или рекомендаций при самых разных обстоятельствах. Хотя она пока и неидеальна в выполнении этих функций, она продолжает развиваться; кроме того, важность стратегического взаимодействия и стратегического мышления становится все более очевидной и осознаваемой.

Ключевые термины

Асимметричная информация

Внешняя неопределенность

Выигрыш

Игра

Игра с нулевой суммой

Игра с постоянной суммой

Инструменты скрининга

Кооперативная игра

Некооперативная игра

Несовершенная информация

Одновременные ходы

Ожидаемый выигрыш

Последовательные ходы

Равновесие

Рациональное поведение

Решение

Сигнал

Сигнализирование

Скрининг

Совершенная информация

Стратегическая игра

Стратегическая неопределенность

Стратегия

Эволюционная игра

Упражнения с решениями

S1. Определите, какая из следующих ситуаций представляет собой игру, а какая – решение. В каждом конкретном случае укажите, какие особенности заставили вас отнести ее к той или иной категории.

a) В молочном отделе продуктового магазина находится группа покупателей, каждый из которых решает, с каким наполнителем купить йогурт.

b) Пара девочек-подростков выбирают платья для выпускного бала.

c) Студент колледжа размышляет над тем, на какой курс записаться для получения степени магистра.

d) New York Times и Wall Street Journal определяют стоимость онлайн-подписки на текущий год.

e) Кандидат на пост президента выбирает кандидата на должность вице-президента.

S2. Проанализируйте описанные ниже стратегические игры. В каждом случае укажите, к какой категории вы бы отнесли данную игру по шести параметрам, перечисленным в тексте. (i) Ходы в игре последовательные или одновременные? (ii) Это игра с нулевой суммой или нет? (iii) Это повторяющаяся игра? (iv) Присутствует ли в игре несовершенная информация и если да, то имеет ли место неполная (асимметричная) информация? (v) Правила игры фиксированные или нет? (vi) Возможны ли соглашения о сотрудничестве или нет? Если вам не хватает информации, чтобы отнести игру к какой-то определенной категории, объясните причины.

a) «Камень, ножницы, бумага»: на счет три каждый игрок делает рукой жест, соответствующий одному из этих трех предметов. Камень побеждает ножницы, ножницы – бумагу, а бумага – камень.

b) Поименное голосование: голосующие отдают свои голоса в устной форме, когда называют их имена. Выигрывает вариант с максимальным количеством голосов.

c) Закрытый аукцион: участники аукциона подают заявку на покупку бутылки вина в конвертах. Покупатель, предложивший самую высокую цену, выигрывает и выплачивает заявленную сумму.

S3. «Участник игры никогда не предпочтет исход игры, при котором каждый игрок получает небольшую прибыль, исходу, при котором он единолично получит ее всю». Это утверждение истинно или ложно? Обоснуйте свой вывод посредством двух-трех предложений.

S4. Вы и ваш соперник ведете игру, в которой могут быть три возможных исхода: вы побеждаете, побеждает ваш соперник (вы проигрываете) или игра заканчивается вничью. В случае выигрыша вы получите 50 долларов, если будет ничья – 20 долларов, проиграете – 0 долларов. Чему равен ваш ожидаемый выигрыш в каждой из следующих ситуаций?

a) Вероятность того, что игра закончится вничью, составляет 50 процентов, а того, что вы победите, – всего 10 процентов (значит, вероятность вашего поражения 40 процентов).

b) Вы можете выиграть или проиграть с вероятностью 50 на 50.

c) Вероятность того, что вы проиграете, равна 80 процентов, победите – 10 процентов, ничья – тоже 10 процентов.

S5. Объясните разницу между использованием теории игр в качестве инструмента прогнозирования и в качестве рекомендательного инструмента. В каких типах реальных ситуаций эти две функции могут оказаться наиболее важными?

Упражнения без решений

U1. Определите, какая из следующих ситуаций представляет собой игру, а какая – решение. В каждом конкретном случае укажите, какие особенности заставили вас отнести ее к той или иной категории.

a) Кандидат от партии на пост президента США должен решить, использовать для своей кампании частное финансирование или государственное.

b) Бережливый Фред получает подарочную карту стоимостью 20 долларов на загрузку музыки, и ему предстоит решить, что покупать – отдельные композиции или альбомы.

c) Красавица Белла получила 100 ответов на свой профиль на сайте онлайн-знакомств и должна определиться, отвечать на каждое предложение или нет.

d) Канал NBC решает, как распределить свои телевизионные шоу в интернете в текущем сезоне. Руководство канала рассматривает такие варианты: Amazon.com, iTunes и/или NBC. Комиссионные, которые могут быть выплачены Amazon или iTunes, открыты для обсуждения.

e) Китай выбирает уровень тарифных ставок на импорт из США.

U2. Проанализируйте описанные ниже стратегические игры. В каждом случае укажите, к какой категории вы бы отнесли данную игру по шести параметрам, перечисленным в тексте. (i) Ходы в игре последовательные или одновременные? (ii) Это игра с нулевой суммой или нет? (iii) Это повторяющаяся игра? (iv) Присутствует ли в игре несовершенная информации и если да, то имеет ли место неполная (асимметричная) информация? (v) Правила игры фиксированные или нет? (vi) Возможны ли соглашения о сотрудничестве или нет? Если вам не хватает информации, чтобы отнести игру к какой-то определенной категории, объясните причины.

a) Гарри и Росс – торговые представители одной и той же компании. Менеджер сообщает им, что тот из них, кто обеспечит более высокий объем продаж, получит «кадиллак».

b) В игровом шоу «Правильная цена» четыре участника угадывают цену телевизора. Игра начинается с крайнего левого игрока, а сумма, которую называет каждый очередной игрок, должна отличаться от догадок предыдущих игроков. Участник шоу, который назовет максимально близкую к реальной цену, но не превысит ее, выиграет телевизор.

c) Шесть тысяч игроков выплачивают по 10 000 долларов каждый, чтобы принять участие в Мировой серии покера. Каждый игрок начинает турнир с фишек на сумму 10 000 долларов, после чего разыгрывается серия No-Limit Texas Hold ’Em (разновидность покера), которая продолжается до тех пор, пока кто-то не выиграет все фишки. Первые 600 игроков получают денежные призы согласно порядку окончания ими игры, при этом победителю достаются 8 миллионов долларов.

d) За пассажирами Desert Airlines не закрепляются места в самолетах; они выбирают их только после того, как окажутся на борту. Авиакомпания устанавливает очередность посадки пассажиров в соответствии со временем их регистрации либо на сайте не более чем за 24 часа до вылета, либо лично в аэропорту.

U3. «Любая выгода для победителя должна вредить проигравшему». Это утверждение истинно или ложно? Обоснуйте свой вывод посредством одного-двух предложений.

U4. Алисе, Бобу и Конфуцию становится скучно во время каникул, и они решают сыграть в новую игру. Каждый вносит в общий фонд 1 доллар, а затем подбрасывает монету. Алиса выиграет, если выпадут три орла или три решки. Боб выиграет, если выпадут два орла и одна решка, а Конфуций – если выпадет один орел и две решки. Все монеты правильные, и победитель получит чистый выигрыш в размере 2 доллара (3–1 = 2 доллара), а каждый проигравший потеряет 1 доллар.

a) Какова вероятность того, что Алиса победит или проиграет?

b) Чему равен ожидаемый выигрыш Алисы?

c) Какова вероятность того, что Конфуций победит или проиграет?

d) Чему равен ожидаемый выигрыш Конфуция?

e) Это игра с нулевой суммой? Обоснуйте ответ.

U5. «Когда один игрок застает другого игрока врасплох, это говорит о том, что у них нет общего понимания правил игры». Приведите пример, который иллюстрирует это утверждение, и контрпример, показывающий, что оно не всегда верно.

Часть II. Концепции и методы

Глава 3. Игры с последовательными ходами

Игры с последовательными ходами предполагают стратегические ситуации, в которых существует строгий порядок ведения игры. Игроки ходят поочередно и осведомлены о действиях соперников, сделавших свои ходы до них. Для того чтобы хорошо играть в такую игру, ее участникам необходимо использовать определенный тип интерактивного мышления. Каждый игрок должен просчитать возможную реакцию противника на тот или иной ход. Всякий раз при выполнении действий игрокам следует думать о том, как их текущие действия повлияют на будущие действия как самого игрока, так и его соперников. Следовательно, игроки выбирают ходы на основании расчета вероятных последствий.

Назад Дальше