Фейнмановские лекции по физике. 9. Квантовая механика II - Фейнман Ричард Филлипс 16 стр.


§ 3. Законы сохранения

Обратимся теперь к другому интересному примеру операции симметрии — к повороту. Рассмотрим частный случай опера­тора, который поворачивает атомную систему на угол j вокруг оси z. Обозначим этот оператор R^z(φ). Предположим еще, что никаких влияний, выстроенных вдоль осей х и у, в нашем физи­ческом случае нет. Все электрические или магнитные поля взяты параллельными оси z, так что никаких изменений во внешних условиях от поворота всей физической системы вокруг оси z не наступит. Например, если имеется атом в пустом простран­стве и мы повернем этот атом вокруг оси z на угол j, то получим ту же физическую систему.

Тогда существуют особые состояния, обладающие тем свойст­вом, что такая операция создает новое состояние, равное перво­начальному, умноженному на некоторый фазовый множитель. Заметим, что когда это так, то изменение фазы обязано быть всегда пропорционально углу j. Представьте, что вы дважды захотели бы сделать поворот на угол j. Это равносильно тому, что повернуть на угол 2j. Если поворот на угол j имеет своим следствием умножение состояния |y0> на фазовый множи­тель eid, так что

Следовательно, если проинтегрировать поглощаемый пол­ный момент количества движения, то он окажется пропорцио­нальным полной энергии, с коэффициентом пропорциональности 1/w, что согласуется с (15.30). Свет действительно несет с собой момент количества движения — одну единицу (Xh), когда он правополяризован по кругу вдоль оси z, и минус одну единицу, когда левополяризован.

Теперь зададим следующий вопрос: если свет линейно поля­ризован в направлении х, то чему равен момент количества движения? Свет, поляризованный в направлении х, может быть представлен суперпозицией право- и левополяризованного света. Поэтому имеется некоторая амплитуда того, что момент количества движения равен +h, и некоторая амплитуда того, что момент равен -h, так что определенного момента количества движения у него нет, а есть амплитуда появиться с +h, и такая же появиться с -h. Интерференция этих двух амплитуд создает линейную поляризацию, обладающую равной вероятностью оказаться с плюс или с минус одной единичкой момента количе­ства движения. Макроскопические измерения, проведенные над пучком линейно поляризованного света, покажут, что он несет нулевой момент количества движения, потому что среди боль­шого числа фотонов, несущих противоположные количества момента, окажется поровну правых и левых, и средний момент количества движения будет равен нулю. И в классической тео­рии вы не обнаружите никакого момента количества движения, разве что где-то окажутся следы какой-то круговой поляриза­ции.

Назад Дальше