Мы говорили, что частица со спином 1 может иметь три значения Jz:+1, 0, -1 (те три состояния, которые нам встретились в опыте Штерна — Герлаха).
Но у света свой нрав: у него только два состояния. Состояния с нулем у него нет. Эта странная потеря связана с тем, что свет не может стоять на месте. У покоящейся частицы со спином j имеются 2j+1 возможных состояния со значениями jz, идущими с шагом 1 от -j до +j. Но оказывается, что если что-то имеет спин j, а масса этого чего-то равна нулю, то у него могут быть только состояния с компонентами +j и -j вдоль направления движения. Например, у света не три состояния, а два, хотя фотон — это объект со спином 1. Как же это согласуется с нашими прежними доказательствами, опирающимися на то, что происходит при поворотах в пространстве, доказательствами того, что для частиц со спином 1 необходима тройка состояний? Покоящуюся частицу можно поворачивать вокруг любой оси, не меняя состояния ее момента. Частицы же с нулевой массой покоя (например, фотоны или нейтрино) не могут находиться в покое; только повороты вокруг оси, указывающей направление движения, не изменят состояния момента. А поворотов вокруг одной оси не хватает на то, чтобы доказать, что нужны обязательно три состояния, если дано, что одно из них при поворотах на угол j меняется, как еij.
Еще одно замечание в сторону. Вообще-то частицы с нулевой массой покоя могут обойтись только одним из двух спиновых состояний (+j, -j) относительно линии движения. У нейтрино (частиц со спином 1/2) в природе существуют только состояния с компонентой момента количества движения -h/2, обратной направлению движения (а у антинейтрино — только с компонентой по направлению движения, +h/2). Когда же система обладает симметрией инверсии (так что четность сохраняется), требуются уже обе компоненты +j и -j. Примером является свет.
§ 5. Распад L0
Теперь приведем пример того, как теорема о сохранении момента количества движения применяется в чисто квантовофизических задачах. Рассмотрим распад лямбда-частицы (L0), которая расщепляется на протон и p--мезон посредством слабого взаимодействия:
Ее квадрат даст вероятность того, что протон вылетит под углом q со спином, направленным туда же, куда направлен спин L0 (вверх по оси z).
Если бы четность сохранялась, можно было бы сделать еще одно утверждение. Распад на фиг. 15.8 — это просто зеркальное отражение, скажем в плоскости yz, распада с фиг. 15.7. Если бы четность сохранялась, b равнялось бы либо a, либо -а. Тогда коэффициента в (15.37) был бы равен нулю и распад одинаково часто происходил бы во всех направлениях.
Результаты опытов говорят, однако, что при распаде асимметрия существует. Измеренное угловое распределение действительно, как мы предсказали, меняется по закону cosq, а не по закону cos2q или по другой степени. Из этого углового распределения, стало быть, следует, что спин L0 равен 1/2. Кроме того, мы видим, что четность не сохраняется. Действительно, коэффициента на опыте найден равным -0,62±0,05, так что b примерно вдвое больше а. Отсутствие симметрии относительно отражений совершенно очевидно.
Вы видите, как много можно вывести из сохранения момента количества движения. Еще некоторые примеры будут приведены в следующей главе.
· · ·
Замечание после лекции. Под амплитудой а здесь мы подразумевали амплитуду того, что состояние
| протон летит по + z, спин по + z> образовано за бесконечно малое время dt из состояния |L, спин по + z>, или, иными словами, что
<протон летит по +z, спин по +z|H|L, спин по + z>= iha, (15.38)
где H — гамильтониан всего мира или по крайней мере той его части, которая ответственна за L-распад. Сохранение момента количества движения означает, что у гамильтониана должно быть такое свойство:
<протон летит по +z, спин по -z|H|L, спин по +z>=0. (15.39)
Под амплитудой b подразумевается, что
<протон летит по + z, спин по —z|H|L, спин по -z>=ihb. (15.40)
Сохранение момента количества движения предполагает, что
<протон летит по + z, спин по +z|H|L, спин по -z>=0. (15.41)
Если вам не ясно, как написаны амплитуды (15.33) и (15.34), можно их записать в более математической форме. Когда мы писали (15.33), нам нужна была амплитуда того, что Л со спином, направленным по +z, распадается на протон, движущийся вдоль направления +z' и обладающий спином, направленным тоже по +z', т. е.
<протон летит по + z', спин по +z'|H|L, спин по +z>. (15.42)
По общим теоремам квантовой механики эту амплитуду можно записать так:
2S<протон летит по + z', спин по +z'|H|L, i><L, i|L, спин по +z>,
(15.43)
где суммирование проводится но базисным состояниям |L, i> покоящейся L-частицы. Поскольку спин L-частнцы равен 1/2,таких состояний два, л каком бы базисе мы ни работали. Если в качестве базисных мы выберем состояния со спином, направленным вверх и вниз по отношению к оси z'(|+z'>, |-z'>), то амплитуда (15.43) будет равна сумме
<протон летит по +z', спин по +z'|H|L, +z'> <L, +z'|L, +z>+ +<протон летит по +z', спин по +z'|H|L,-z'><L,-z|L, +z>. (15.44).
Первый множитель в первом слагаемом равен а [из (15.38)], а первый множитель во втором слагаемом равен нулю — из формулы (15.41), в свою очередь следующей из сохранения момента количества движения. Второй множитель <L, +z'|L, +z> из первого слагаемого — это как раз амплитуда того, что частица со спином 1/2, направленным вверх по одной оси, будет также обладать спином, направленным вверх по другой оси, повернутой относительно первой на угол q . Такая амплитуда равна cosq/2 [см. табл. 4.2 (вып. 8)]. Так что (15.44) равно просто а созq/2, как и было написано в (15.33). Амплитуда (15.34) следует из таких же рассуждений для L-частицы со спином, направленным вниз.
· · ·
§ 6. Сводка матриц поворота
Теперь мы хотим собрать воедино все, что мы узнали о поворотах частиц со спином 1/2 и спином 1; это будет удобно для дальнейшего. Ниже вы найдете таблицы двух матриц поворота Rz(j) и Ry(q) для частиц со спином 1/2, для частиц со спином 1 и для фотонов (частиц со спином 1 и нулевой массой).