Фейнмановские лекции по физике. 7. Физика сплошных сред - Фейнман Ричард Филлипс 4 стр.


Когда мы говорили о преобразовании осей, то считали, что положение самого кристалла фиксировано в пространстве. Если же вместе с осями поворачивать и кристалл, то a не изме­няются. И обратно, если по отношению к осям изменять ориен­тацию кристалла, то получится новый набор коэффициентов а. Но если они известны для какой-то одной ориентации кристал­ла, то с помощью только что описанного преобразования их можно найти и для любой другой ориентации. Иначе говоря, диэлектрические свойства кристалла полностью описываются заданием компонент тензора поляризуемости aij. в любой про­извольно выбранной системе координат. Точно так же как век­тор скорости v = (vx, vy , vz) можно связать с частицей, зная, что три его компоненты при замене осей координат будут изменять­ся некоторым определенным образом, тензор поляризуемости aij, девять компонент которого при изменении системы осей координат преобразуются вполне определенным образом, мож­но связать с кристаллом.

Связь между Р и Е в уравнении (31.4) можно записать в бо­лее компактном виде:

Мы можем снова воспользоваться этим выражением для опре­деления эллипсоида инерции. Кроме того, снова можно восполь­зоваться энергетическими соображениями и показать, что этот тензор симметричен, т. е. Iij=Iji.

Тензор инерции твердого тела можно написать, если извест­на форма тела. Нам нужно только выписать полную кинетиче­скую энергию всех частиц тела. Частица с массой m и скоростью v обладает кинетической энергией 1/2mv2, а полная кинетиче­ская энергия равна просто сумме

S1/2mv2

Назад Дальше