Благодаря этой симметрии тензора Sijего можно то; описывать эллипсоидом с тремя главными осями. Напряжение имеет особенно простой вид на площадках, нормальных к этим: осям: оно соответствует чистому сжатию или растяжению в направлении главных осей. Вдоль этих площадок нет никак сдвиговых сил, причем такие оси, для которых отсутствуют сдвиговые силы, можно выбрать для любого напряжения. Если эллипсоид превращается в сферу, то в любом направлении действуют только нормальные силы. Это соответствует гидростатическому давлению (положительному или отрицательном. Таким образом, для гидростатического давления тензор диагонален, причем все три компоненты его равны друг другу (фактически они просто равны давлению р). В этом случае мы можем написать
где суммирование по a и b проводится по всем их значениям (т. е. t, x, у и z), но, как обычно в теории относительности, для суммы S и символа d принимается специальное соглашение. В суммах слагаемые со значками х, у, z должны вычитаться, а dtt=+1, тогда как dxx.=dуу = dzz=-1 и dmv=0 для всех m№v (с=1). Сможете ли вы доказать, что эта формула приводит к плотности энергии Stt=(e0/2)(E2+B2) и вектору Пойнтинга e0ЕXВ? Можете ли вы показать, что в электростатическом поле, когда В=0, главная ось напряжения направлена по электрическому полю и вдоль направления поля возникает натяжение (e0/2)E2и равное ему давление в направлении, перпендикулярном направлению поля?
* Если не полагать с=1, как это делается здесь, то плотность энергии в принятых в книге единицах будет равна (e0/2)(E2+с2B2) или в единицах СИ 1/2[e0E2+(l/m0)B2]. — Прим. ред.
* Эту работу, затраченную на создание поляризации электрическим полем, не нужно путать с потенциальной энергией —p0*Е постоянного дипольного момента p0 в поле Е.
* Обычно для коэффициентов пропорциональности между Р и Е пользуются термином тензор восприимчивости, оставляя термин поляризуемость для величин, относящихся к одной частице. Прим. ред.
* В гл. 10, следуя общепринятому соглашению, мы писали Р=e0cЕ и величину c (хи) называли «восприимчивостью». Здесь же нам удобнее пользоваться одной буквой, так что вместо e0c мы будем писать a. Для изотропного диэлектрика a=(c-1)e0, где c — диэлектрическая проницаемость (см. гл. 10 §4 вып.5)
Глава 32
ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ ПЛОТНОГО ВЕЩЕСТВА
§ 1. Поляризация вещества
§ 2. Уравнения Максвелла в диэлектрике
§ 3. Волны в диэлектрике
§ 4. Комплексный показатель преломления
§ 5. Показатель преломления смеси
§ 6. Волны в металлах
§ 7.Низкочастотное и высокочастотное приближение глубина скин-слоя и плазменная частота
Повторить: всё что в табл. 32.
§ 1. Поляризация вещества
Здесь я хочу обсудить явления преломления света, ну и, разумеется, его поглощение плотным веществом. Теорию показателя преломления мы уже рассматривали в гл. 31 (вып. 3), но тогда наши знания математики были весьма ограничены и мы остановились только на показателе преломления веществ с малой плотностью наподобие газов. Но физические принципы, приводящие к возникновению показателя преломления, мы там все же выяснили. Электрическое поле световой волны поляризует молекулы газа, создавая тем самым осциллирующие дипольные моменты, а ускорение осциллирующих зарядов приводит к излучению новых волн поля. Это новое поле, интерферируя со старым, изменяет его. Изменение поля эквивалентно тому, что происходит сдвиг фазы первоначальной волны. Из-за того что сдвиг фазы пропорционален толщине материала, эффект в целом оказывается эквивалентным изменению фазовой скорости света в материале. Прежде, когда рассматривалось это явление, мы пренебрегали усложнениями, возникающими от таких эффектов, как действие новой измененной волны на поле осциллирующего диполя. Мы предполагали, что силы, действующие на заряды атомов, определяются только падающей волной, тогда как на самом деле на осциллятор действует не только падающая волна, но и волны, излученные другими атомами. В то время нам еще было трудно учесть этот эффект, поэтому мы изучали только разреженные газы, где его можно считать несущественным.