Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук - Фейнман Ричард Филлипс 11 стр.


Но формула эта неверна. Мы упустили из вида одно существен­ное обстоятельство: когда один электрон попал в атом, другой электрон уже не может проникнуть в этот же объем! Иначе говоря, не все объемы из числа возможных доступны электрону, который раздумывает, куда бы ему отправиться — в пар или в конденсированное состояние. Здесь возникают не­предвиденные осложнения, в силу которых электрон не может подойти близко к тому месту, где уже находится другой элек­трон — они отталкиваются. По этой причине мы должны считать только ту часть объема, в которой электрон может разместиться. Ведь те объемы, которые уже заняты, нельзя причислять к числу возможных, и только те объемы, которые предоставлены ионам, можно рассматривать как места, вакант­ные для электронов. Тогда, учтя это

Фиг. 42.2. Переход между двумя уровнями энергии атома.

Затем Эйнштейн предположил, что, когда атом освещается светом подходящей частоты, он может поглотить фотон, перейдя из состояния n в состояние m, и вероятность такого перехода за 1 сек пропорциональна интенсивности освещающего атом света и еще зависит от того, какие уровни мы возьмем.

Назовем постоянную пропорциональности Bnm, чтобы пом­нить, что это не универсальная постоянная природы и зависит она от того, какую пару уровней мы выберем: некоторые уровни возбудить легко, а другие возбуждаются с большим трудом. Теперь надо найти формулу, описывающую скорость перехода из т в п. Эйнштейн предположил, что она складывается из двух частей. Даже если внешнего излучения нет, существует вероятность того, что атом, излучив фотон, перейдет из воз­бужденного состояния в состояние с меньшей энергией. Это так называемое спонтанное излучение.

Это предположение аналогично идее о том, что даже клас­сический осциллятор, обладая определенной энергией, не мо­жет ее сохранить; излучение неизбежно вызывает потерю энергии. Таким образом, по аналогии со спонтанным излуче­нием классических систем существует определенная вероят­ность Amn(она опять зависит от уровней), с которой атом переходит из состояния m в состояние n, и эта вероятность не зависит от того, освещается атом светом или нет. Но Эйнштейн пошел еще дальше и, сравнив с классической физикой и используя другие аргументы, пришел к заключению, что излучение зависит от наличия света вокруг. Когда атом осве­щается светом подходящей частоты, то вероятность излучения фотона возрастает пропорционально интенсивности света с постоянной пропорциональности Bmn. Если бы нам удалось выяснить, что этот коэффициент равен нулю, то мы уличили бы Эйнштейна в ошибке. Но, конечно, мы увидим, что он был прав.

Назад Дальше