Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук - Фейнман Ричард Филлипс 3 стр.


Между прочим, если мы будем сравнивать первоначальное направление и направление, образующее с ним какой-то угол 0, то интересно, что элементарная площадь на сфере единичного радиуса равна произведению 2p на sinqdq, или, что то же самое, на дифференциал cosq. Это означает, что косинус угла 9 между двумя направлениями с равной вероятностью принимает лю­бое значение между -1 и +1.

Теперь нам надо вспомнить о том, что имеется на самом деле; ведь у нас нет столкновений в системе центра масс, а сталки­ваются два атома с произвольными векторными скоростями v1 и v2. Что происходит с ними? Мы поступим так: снова перей­дем к системе центра масс, только теперь она движется с «ус­редненной по массам» скоростью vц.м.=(m1v1+m2v2)/(m1+m2). Если следить за столкновением из системы центра масс, то оно будет выглядеть так, как это изображено на фиг. 39.3, только надо подумать об относительной скорости столкновения w. Относительная скорость равна v1-v2. Дело, следовательно, обстоит так: движется система центра масс, а в системе центра масс молекулы сближаются с относительной скоростью w; столк­нувшись, они движутся по новым направлениям. Пока все это происходит, центр масс все время движется с одной и той же скоростью без изменений.

Ну и что же получится в конце концов? Из предыдущих рассуждений делаем следующий вывод: при равновесии все направления, w равновероятны относительно направления дви­жения центра масс. Это означает, что в конце концов не будет никакой корреляции между направлением относительной ско­рости и движением центра масс. Если бы даже такая корреля­ция существовала вначале, то столкновения ее бы разрушили и она в конце концов исчезла бы полностью. Поэтому сред­нее значение косинуса угла между w и vц.м. равно нулю. Это значит, что

<w·vц.м.>=0. (39.19)

Но что такое w·vц.м.? Это скалярное произведение, равное

Далее, поскольку <,mAv2A>= <mBv2B>, то первый и последний члены взаимно уничтожаются, и мы получаем

(mB-mA)<vA·vB>=0.

Итак, если mА№mB, то <va·vв>=0, а это означает, что жест­кому движению всей молекулы, рассматриваемой как одна частица массы М, соответствует средняя кинетическая энергия, равная 3/2kT.

Одновременно мы доказали, что средняя кинетическая энергия внутреннего движения двухатомной молекулы, если не учитывать движения центра масс, равна 3/2kT! Ведь полная кинетическая энергия отдельных частей молекулы равна 1/2mAv2A+1/2mBv2B, а среднее ее значение — это 3/2kT+3/2kT, или 3kT. Кинетическая энергия движения центра масс равна 3/2kT, так что средняя кинетическая энергия вращательного и колебательного движений двух атомов внутри молекулы — это разность этих величин, 3/zkT.

Теорема о средней энергии центра масс — это весьма общая теорема: для каждого объекта, рассматриваемого как единое целое, независимо от того, действуют на этот объект силы или нет, средняя кинетическая энергия каждого независимого движения равна 1l2kT. Эти «независимые направления дви­жения» иногда называют степенями свободы системы. Число степеней свободы молекулы, составленной из rатомов, равно 3r, потому что для определения положения каждого атома нужны три координаты. Полную кинетическую энергию мо­лекулы можно представить либо как сумму кинетических энер­гий отдельных атомов, либо как сумму кинетической энергии движения Центра масс и кинетической энергии внутренних движений. Последнюю иногда можно представить как сумму кинетической энергии вращений и кинетической энергии ко­лебаний, но это можно сделать только приближенно. Наша тео­рема, если применить ее к r-атомной молекуле, гласит, что средняя кинетическая энергия молекулы равна 3/2rkT дж, из которых 3/2kT — кинетическая энергия движения молекулы как целого, а остаток 3/2(r-1)kT — это внутренняя кинети­ческая энергия вращений и колебаний.

Назад Дальше