Фейнмановские лекции по физике. 4. Кинетика. Теплота. Звук - Фейнман Ричард Филлипс 2 стр.


P=2/3n(mv2/2). (39.8)

Мы выделили множитель <mv2/2>, потому что это кинетичес­кая энергия движения молекулы как целого. Итак, мы нашли

PV=N2/3(mv2/2). (39.9)

Если мы будем знать скорость молекул, то очень быстро под­считаем давление.

В качестве простого примера можно описать такие газы, как гелий, пары ртути или калия при достаточно высокой тем­пературе или аргон; это одноатомные газы, для которых можно считать, что их атомы не имеют внутренних степеней свободы. Если нам попадется сложная молекула, то в ней могут быть всевозможные внутренние движения, всякого рода колебания и т. д. Мы предполагаем, что можно не принимать их в расчет; но можно ли это делать — вопрос сложный и мы к нему вер­немся; в действительности для нашего случая это окажется допустимым. Итак, предположим, что внутреннее движение атомов можно не рассматривать, и поэтому кинетическая энер­гия движения молекулы как целого восполняет всю энергию. Для одноатомного газа кинетическая энергия — действительно полная энергия. Будем обозначать полную энергию буквой U (иногда ее называют полной внутренней энергией, как-будто у газа может быть какая-то внешняя энергия), т. е. всю энергию всех молекул газа или любого другого объекта.

В случае одноатомного газа мы предположим, что полная энергия U равна произведению числа атомов на среднюю кине­тическую энергию каждого из них, потому что мы пренебрегли возможным возбуждением атомов или какими-то внутриатом­ными движениями. Тогда

PV=2/3U. (39.10)

Немного задержимся и ответим на такой вопрос: предпо­ложим, что мы медленно сжимаем газ; каким должно быть давление, чтобы сжать газ до заданного объема? Определить это легко, так как давление есть энергия, деленная на объем. Но когда газ сжимается, производится работа и поэтому энер­гия газа U возрастает. Процесс сжатия описывается неким диф­ференциальным уравнением. В начальный момент газ занимает определенный объем и обладает определенной энергией, поэ­тому нам известно и давление. Как только мы начинаем сжи­мать газ, энергия U возрастает, объем V уменьшается, а как изменяется давление, нам еще предстоит узнать.

Итак, нам предстоит решить дифференциальное уравнение. Сейчас мы это сделаем. Однако подчеркнем сначала, что, сжи­мая газ, мы предполагаем, что вся работа уходит на увеличение энергии атомов газа. Вы спросите: «А необходимо ли на этом останавливаться? Куда же еще она может уйти?» Но оказыва­ется, что затраченная работа может уйти и в другое место. Энергия может «вытечь» из ящика сквозь стенки: горячие (т. е. очень быстрые) атомы при бомбардировке будут нагревать стенки ящика и энергия выйдет наружу. Но мы предполагаем, что в нашем случае этого не происходит.

Сделаем небольшое обобщение, хотя и в этом случае мы бу­дем рассматривать лишь очень частный случай: запишем вместо PV=2/3U

PV = (g-1)U. (39.11)

Энергия U умножается на (g-1) для удобства, потому что в дальнейшем нам придется иметь дело с газами, для которых множитель перед U равен не 2/3, а какому-то другому числу. Чтобы можно было описывать и такие случаи, запишем этот множитель так, как его обозначают почти сто лет. Тогда в на­шем случае одноатомного газа, такого, как гелий, g=5/з, потому что 5/3-1=2/з.

Мы уже говорили, что совершаемая при сжатии газа работа равна -PdV. Сжатие, при котором тепло не поглощается и не выделяется, называется адиабатическим сжатием; это слово образовано из трех греческих слов: а(не)+dia(сквозь)+bainein(проходить). (Слово адиабатический употребляется в фи­зике в разных смыслах, так что не всегда можно понять, что между ними общего.) При адиабатическом сжатии вся затрачен­ная работа уходит на изменение внутренней энергии. Вот в этом и смысл, что нет потерь энергии и, значит, PdV=-dU. Но поскольку U=PV/g-1, то можно записать

dU=(PdV+VdP)/(g-1). (39.12)

Итак, PdV =-(PdV+VdP)/ (g-1) или, приводя подобные чле­ны, получаем gPdV=-VdP, или

gdv/v+dp/p=0, (39.1З)

Если мы примем, что g постоянна, а это так в случае одно­атомных газов, то уравнение интегрируется и мы получаем glnV+lnP=lnC, где С — постоянная интегрирования. Пе­реходя к степеням, мы получаем такой закон:

PVg=C (постоянная). (39.14)

Иначе говоря, если выполнены условия адиабатичности, т. е. потерь энергии нет и газ при сжатии нагревается, то в случае одноатомного газа произведение объема на давление в сте­пени 5/3 есть величина постоянная! Этот результат мы полу­чили чисто теоретически, но опыт показывает, что и в действи­тельности все происходит именно так.

§ 3. Сжимаемость излучения

Приведем еще один пример из кинетической теории газов; он не особенно интересует химиков, но очень важен для астро­номов. Внутри нагретого до высокой температуры ящика име­ется огромное число фотонов. (В качестве такого ящика надо взять очень горячую звезду. Солнце недостаточно горячо для этих целей. В звезде, правда, слишком много атомов, но если ее температура очень высока, то атомами можно пренебречь и считать, что внутренность звезды целиком заполнена фотонами.) Вспомним теперь, что фотон обладает импульсом р. (При изучении кинетической теории газов мы всегда будем ис­пытывать страшные неудобства: р — это давление, но р — еще и импульс; v — это объем, но это и скорость одновре­менно, а. Т — это и температура, и кинетическая энергия, и время, и момент силы; тут нужен глаз да глаз.) Сейчас буква р — это импульс, вектор. Поступим так же, как и в пре­дыдущем параграфе, за удары фотонов о стенку ответственна x-составляющая импульса, а удвоенная x-составляющая импульса — это импульс, полученный стенкой после каждого удара. Итак, вместо 2mvxпишем х, а при вычислении числа столкновений нужно по-прежнему подставлять vx; проделав все это, формулу (39.4) для давления мы уже записываем в виде

P=2npxvx. (39.15)

После усреднения мы получим произведение nна среднее зна­чение pxvx(вспомните, что мы говорили о множителе 2), а после того как на помощь будут призваны два других измерения, мы найдем

PV=N<p·v>/3. (39.16)

о

Эта формула почти совпадает с (39.9), потому что импульс ра­вен mv, просто это более общая формула, вот и все. Произведе­ние давления на объем равно произведению полного числа ато­мов на среднее значение 1/3(p·v).

Чему равно p·v для фотонов? Импульс и скорость направ­лены одинаково, а скорость равна скорости света, поэтому интересующее нас произведение — это импульс фотона, ум­ноженный на скорость света. Произведение импульса фотона на скорость света — это энергия фотона: Е=рс. Мы имеем дело с энергией каждого фотона и должны умножить среднюю энергию фотона на число фотонов. Получается одна треть пол­ной энергии:

PV=Ui3 (в случае фотонного газа). (39.17)

Для фотонов, следовательно, поскольку впереди стоит 1/3, множитель (g-1) в (39.11) равен l/4, т. е. g= 4/3, значит, излучение в ящике подчиняется закону

РV4/3=С. (39.18)

Таким образом, мы знаем сжимаемость излучения! Можно ис­пользовать эту формулу при анализе вклада излучения в дав­ление внутри звезды, подсчитать давление и оценить, как оно изменяется при сжатии звезды. Просто удивительно, как много мы уже умеем!

§ 4. Температура и кинетическая энергия

До сих пор мы не имели дела с температурой; мы созна­тельно избегали разговоров на эту тему. Мы знаем, что если сжимать газ, энергия молекул возрастает, и мы обычно гово­рим, что газ при этом нагревается. Теперь надо понять, какое это имеет отношение к температуре. Нам известно, что такое адиабатическое сжатие, а как поставить опыт, чтобы можно было сказать, что он был проведен при постоянной температуре? Если взять два одинаковых ящика с газом, приставить их один к другому и подержать так довольно долго, то даже если вна­чале эти ящики обладали тем, что мы назвали различной тем­пературой, то в конце концов температуры их станут одинако­выми. Что это означает? Только то, что ящики достигли того состояния, которого они в конце концов достигли бы, если бы их надолго предоставили самим себе! Состояние, в котором температуры двух тел равны — это как раз то окончательное состояние, которого достигают после длительного соприкосно­вения друг с другом.

Давайте посмотрим, что случится, если ящик разделен на две части движущимся поршнем и каждое отделение заполне­но разным газом, как это показано на фиг. 39.2 (для простоты предположим, что имеются два одноатомных газа, скажем, гелий и неон).

Это тоже очень трудная задача, но мы все-таки решим ее. Сначала нам придется решить «подзадачу» (опять это один из тех случаев, когда, независимо от того как решается задача, окончательный результат запоминается легко, а вывод требует большого искусства). Предположим, что перед нами две стал­кивающиеся молекулы, обладающие разными массами; во из­бежание осложнений мы наблюдаем за столкновением из сис­темы их центра масс (ц. м.), откуда легче уследить за ударом молекул. По законам столкновений, выведенным из законов сохранения импульса и энергии, после столкновения молекулы могут двигаться только так, что каждая сохраняет величину своей первоначальной скорости, и изменить они могут только направление движения. Типичное столкновение выглядит так, как его изобразили на фиг. 39.3.

Фиг. 39. 3. Столкновение двух неодинаковых молекул, если смот­реть из системы центра масс.

Предположим на минутку, что мы наблюдаем столкновения, системы центра масс которых покоятся. Кроме того, надо предположить, что все молекулы движутся горизонтально. Конечно, после первого же столкнове­ния часть молекул будет двигаться уже под каким-то углом к исходному направлению. Иначе говоря, если вначале все молекулы двигались горизонтально, то спустя некоторое вре­мя мы обнаружим уже вертикально движущиеся молекулы. После ряда других столкновений они снова изменят направле­ние и повернутся еще на какой-то угол. Таким образом, если кому-нибудь и удастся сначала навести порядок среди моле­кул, то все равно они очень скоро разбредутся по разным на­правлениям и с каждым разом будут все больше и больше распыляться. К чему же это в конце концов приведет? Ответ: Любая пара молекул будет двигаться в произвольно выбранном направлении столь же охотно, как и в любом другом. После этого дальнейшие столкновения уже не смогут изменить распределе­ния молекул.

Что имеется в виду, когда говорят о равновероятном дви­жении в любом направлении? Конечно, нельзя говорить о вероятности движения вдоль заданной прямой — прямая слишком тонка, чтобы к ней можно было относить вероятность, а следует взять единицу «чего-нибудь». Идея заключается в том, что через заданный участок сферы с центром в точке столк­новения проходит столько же молекул, сколько через любой другой участок сферы. В результате столкновений молекулы распределяются по направлениям так, что любым двум равным по площади участкам сферы будут соответствовать равные ве­роятности (т. е. одинаковое число прошедших через эти участки молекул).

Назад Дальше