Что получится, если умножить его на miи просуммировать по всем i? Вынося постоянные величины за знак суммирования, находим
Ix=Smixi+2Xц. м. Smixi+X2ц. м. Smi .
Третью сумму подсчитать легко; это просто МХ2ц..м.. Второй член состоит из двух сомножителей, один из которых Smixi; он равен x'-координате центра масс. Но это должно быть равно нулю, ведь х' отсчитывается от центра масс, а в этой системе координат среднее положение всех частиц, взвешенное их массами, равно нулю. Первый же член, очевидно, представляет собой часть х от Iц. Таким образом, мы и приходим к формуле (19.7).
Давайте проверим формулу (19.7) на одном примере. Просто проверим, будет ли она применима для стержня. Мы уже нашли, что момент инерции стержня относительно его конца должен быть равен ML2/3. А центр масс стержня, разумеется, находится на расстоянии L/2. Таким образом, мы должны получить, что МL2/3=МL2/12+М(L/2)2. Так как одна четвертая + одна двенадцатая = одной третьей, то мы не сделали никакой грубой ошибки.
Кстати, чтобы найти момент инерции (19.5), вовсе не обязательно вычислять интеграл. Можно просто предположить, что он равен величине ML2, умноженной на некоторый неизвестный коэффициент g. После этого можно использовать рассуждения о двух половинках и для момента инерции (19.6) получить коэффициент 1/4g. Используя теперь теорему о параллельном переносе оси, докажем, что g=1/4g+1/4, откуда g=1/3. Всегда можно найти какой-нибудь окольный путь!
При применении теоремы о параллельных осях важно помнить, что ось Iц должна быть параллельна оси, относительно которой мы хотим вычислять момент инерции.
Итак, Fr — это сила, которую измеряет Мик. Попытаемся понять, откуда что берется. Может ли Мик признать первый член? «Конечно,— сказал бы он,— даже если бы я не вращался, то такая центробежная сила должна возникнуть, если побежать по кругу со скоростью vм». Итак, это просто центробежная сила, появления которой Мик ожидает и которая не имеет ничего общего с вращением карусели. Вдобавок Мик думает, что должна быть еще одна центробежная сила, действующая даже на неподвижные предметы на его карусели. Это дает третий член. Однако в дополнение к ним существует еще один член — второй, который опять равен 2 mwvм. Раньше, при радиальной скорости, кориолисова сила fk была тангенциальна. Теперь же, при тангенциальной скорости, она радиальна. В самом деле, одно выражение отличается от другого только знаком. Сила всегда имеет одно и то же направление по отношению к скорости независимо от того, куда направлена скорость. Она действует под прямым углом к скорости и равна по величине 2mwv.
Глава 20
ВРАЩЕНИЕ В ПРОСТРАНСТВЕ
§ 1. Моменты сил в трехмерном пространстве
§ 2. Уравнения вращения в векторном виде
§ 3. Гироскоп
§ 4. Момент количества движения твердого тел
§ 1. Моменты сил в трехмерном пространстве
В этой главе мы рассмотрим одно из наиболее замечательных и забавных следствий законов механики — поведение крутящегося колеса. Для этого нам прежде всего нужно расширить математическое описание вращения, понятие момента количества движения, момента силы и т. д. на трехмерное пространство. Однако мы не будем использовать эти уравнения во всей их общности и изучать все следствия, ибо это займет многие годы, а нас ждут другие разделы, к которым мы вскоре должны перейти. В вводном курсе можно остановиться только на основных законах и их приложениях к весьма ограниченному числу особенно интересных случаев.
Прежде всего хочу отметить, что для вращения в трех измерениях твердого тела или какого-то иного объекта остается верным все, что мы получили для двух измерений. Иначе говоря, xFy-yFxтак и остается моментом силы «в плоскости ху», или моментом силы «относительно оси z». Остается справедливым также, что этот момент силы равен скорости изменения величины хрy-урх; если вы вспомните вывод уравнения (18.15) из законов Ньютона, то увидите, что фактически мы не использовали того обстоятельства, что движение плоское, и просто дифференцировали величину хру-урхи получали xFy-yFx, так что эта теорема остается верной. Величину хру-урхмы называли моментом количества движения в плоскости ху, или моментом количества движения относительно оси z. Кроме плоскости ху, можно использовать другие пары осей и получить другие уравнения. Возьмем, например, плоскость yz. Уже из симметрии ясно, что если мы просто подставим у вместо х, a z вместо у, то для момента силы получим выражение yFz-zFyи ypz-zpyбудет угловым моментом в этой плоскости. Разумеется, можно еще взять и плоскость zx и получить для нее