zFx-xFz=d/dt(zpx-xpz).
Совершенно ясно, что для движения одной частицы мы получаем и три уравнения для трех плоскостей. Более того, если мы складывали такие величины, как хру—урх, для многих частиц и называли это полным угловым моментом, то теперь у нас есть три сорта подобных выражений для трех плоскостей: ху, yz и zx, а сделав то же самое с моментами сил, мы можем также говорить и о полных моментах сил в этих плоскостях. Таким образом, появляются законы о том, что внешний момент сил в некоторой плоскости равен скорости изменения углового момента в той же плоскости. Это просто обобщение того, что писалось для двух измерений.
Однако теперь можно сказать: «Но ведь есть еще и другие плоскости. Разве нельзя в конце концов взять плоскость под каким-то углом и вычислять действующие в ней моменты сил. Для каждого такого случая нужно писать другие системы уравнений, так что в результате их наберется масса!» Здесь следует отметить очень интересное обстоятельство. Оказывается, что если мы в комбинации x'Fy'-y'Fx'для «косой» плоскости выразим величины x', Fy'и т. д. через их компоненты, то результат можно записать в виде некоторой комбинации трех моментов в плоскостях ху, yz и zx. В этом нет ничего нового. Другими словами, если нам известны три момента сил в плоскостях ху, yz и zx, то момент сил в любой другой плоскости, как и угловой момент, может быть записан в виде их комбинации: скажем, 6% одного, 92% другого и т. д. Этим свойством мы сейчас и займемся.
Пусть Джо для своих координатных осей х, у, z определял все моменты сил и все угловые моменты во всех плоскостях. Однако Мик направил свои оси х', у', z' по-другому. Чтобы немного облегчить задачу, предположим, что повернуты только оси x и y. Мик выбрал другие оси х' и у', а его ось z осталась той же самой. Это означает, что плоскости yz и zx у него новые, а поэтому моменты сил и угловые моменты у него тоже окажутся новыми. Например, его момент сил в плоскости х'у' окажется равным
Если мы сложим (20.13) для многих частиц, то получим, что внешний момент сил, действующий на систему, равен скорости изменения полного момента количества движения
Еще одна теорема: если полный момент внешних сил равен нулю, то вектор полного момента количества движения системы остается постоянным. Эта теорема называется законом сохранения момента количества движения. Если на данную систему не действуют никакие моменты сил, то ее момент количества движения не изменяется.
А что можно сказать об угловой скорости? Вектор ли она? Мы уже рассматривали вращение твердого тела вокруг некоторой фиксированной оси, а теперь давайте на минуту предположим, что оно одновременно вращается вокруг двух осей. Тело может находиться, например, в коробке и вращаться там вокруг некоторой оси, а сама коробка в свою очередь вращается вокруг какой-то другой оси. Результатом же такого сложного движения будет вращение тела вокруг некоторой новой оси. Самое удивительное здесь то, что эта новая ось может быть найдена следующим образом. Если вращение в плоскости ху представить как вектор, направленный вдоль оси z, длина которого равна скорости вращения, а в виде другого вектора, направленного вдоль оси y, изобразить скорость вращения в плоскости, то, сложив их по правилу параллелограмма, получим результат, величина которого говорит о скорости вращения тела, а направление определяет плоскость вращения. Попросту говоря, угловая скорость в самом деле есть вектор, для которого скорость вращения в трех плоскостях представляет прямоугольные проекции на эти плоскости.