На самом деле даже неподвижный ньютоновский эфир не поможет определить, правая это рука или левая, если только в самой структуре пространства но содержится какая-то асимметрия. Если рука находится в сферическом, коническом или цилиндрическом мире или, наконец, в бесконечном пространстве, пересеченном линиями кубической решетки, положение наше будет не лучше, чем раньше. А вот если весь мир имеет форму огромной человеческой руки, тут дело другое. Мы можем назвать космическую руку «правой» (или пометить ее знаком плюс), тогда изолированную человеческую руку, если она имеет противоположную асимметрию, мы вынуждены будем назвать «левой» (или пометить ее знаком минус). Мы можем также идентифицировать эту руку, используя асимметрию мельчайших ячеек пространства, «зернышек», образуемых сплетением геодезических линий подобно асимметричной решетке кварца или киновари (по геодезическим линиям проходят кратчайшие пути между парами точек). В последующих главах мы увидим, что такие рассуждения представляют в настоящее время наибольший интерес в связи с последними открытиями, указывающими на асимметричное поведение некоторых элементарных частиц.
Кант сам скоро понял, что его мысленный эксперимент ничего не доказывает. Позднее на основе более зрелых размышлений он объединил взгляды Ньютона и Лейбница, создав свою собственную, синтетическую систему воззрений, тесно связанную с его трансцендентальным идеализмом. «Ньютон был прав, — утверждал он, — когда считал, что пространство не зависит от материальных тел, но и Лейбниц был прав, отказывая пространству в реальности». Пространство не зависит от материальных тел именно потому, что оно лишено реальности; это лишь идеальный, субъективный способ восприятия нами трансцендентной реальности, лежащей полностью за пределами нашего понимания.
По Канту, пространство и время подобны стеклам в очках, без которых мы ничего не можем видеть. Реальный мир, внешний по отношению к нашему сознанию, непосредственно невоспринимаем; мы видим его только через свои пространственно-временные очки. Реальный объект, называемый Кантом «вещь в себе», существует трансцендентально, вне пространства и времени и абсолютно непознаваем. («Решение загадки жизни в пространстве и времени лежит за пределами пространства и времени», — пишет Людвиг Витгенштейн в «Логико-философском трактате».) Наш опыт опирается только на чувственные восприятия, на то, что мы видим, слышим, осязаем, обоняем, пробуем на вкус. Эти восприятия являются в некотором смысле иллюзией. Они оформлены и окрашены нашими субъективными представлениями о пространстве и времени, как цвет предмета изменяется цветными стеклами или форма тени меняется в зависимости от того, на какую поверхность она упала.
Space is a swarming in the eyes; and time
A singing in the ears.
(Пространство — волнение в глазах,
А время — пение в ушах.)
«В чем же тогда решение?» — спрашивает Кант в своих «Пролегоменах». «Эти (отраженные в зеркале) предметы не представляют вещи такими, какие они есть сами по себе и какими воспринял бы их чистый разум, но являются чувственными интуициями, то есть явлениями, сама возможность которых покоится на связи между некими неведомыми вещами в себе с чем-то другим, а именно с нашими ощущениями».
Пытаясь понять смысл утверждений, сделанных философами прошлых поколений, стоит иногда рискнуть и перефразировать их с помощью современной терминологии и в свете современных знаний. Делать это, конечно, нужно в высшей степени осторожно. Тем не менее, я думаю, что если бы Кант был сейчас жив, он выразил бы свою точку зрения примерно так:
Математики XVIII столетия, как мы уже видели, еще не осознали, что евклидову геометрию можно обобщить на произвольное число измерений. Отрезок прямой длиной в один метр является одномерной фигурой. В двух измерениях соответствующей фигурой будет квадрат со стороной в один метр, а в трех измерениях — куб с ребром в один метр. Эту картину можно обобщать, добавляя сколько угодно измерений. Гиперкуб — это куб в четырех измерениях, каждая сторона его имеет длину один метр и образует прямые углы со всеми остальными сторонами. Нет причин, по которым не мог бы существовать четырехмерный мир, содержащий материальные гиперкубы, или пятимерный мир, или шестимерный, семимерный. Эта иерархия бесконечна. И на каждом ее уровне геометрия евклидова, такая же точная и самосогласованная, как и известная геометрия Евклида в пространстве и на плоскости, которую мы учили в школе.
Математические методы могут раскрыть свойства фигур в этих высших евклидовых пространствах, но наше мышление находится в плену евклидова 3-пространства, которое соединено с одномерным временем, летящим вперед как стрела. Мы не можем представить себе вещь, существующую вне трех пространственных измерений и одномерной временной протяженности. Может быть, после соответствующей тренировки или в будущем, когда в результате эволюции ум человеческий превратится в более мощный инструмент, мы и смогли бы научиться мыслить в четырех пространственных измерениях. Сейчас мы этого не умеем. Мы смотрим на мир сквозь пространственно-временные очки, одно стекло которых позволяет нам воспринять одномерное время, другое — трехмерное пространство. Мы не можем представить себе мысленно образ гиперкуба или какой-нибудь другой четырехмерной структуры. Мы представляем себе только трехмерные построения, имеющие к тому же длительность, то есть движущиеся вдоль единственной колеи времен.
Предположим, однако, что существует трансцендентный мир, мир 4-пространства, не доступный нашим органам чувств, за пределами способностей нашего воображения. Как же будут выглядеть с точки зрения гиперличности в таком гиперпространстве два асимметричных телесных предмета, которые подобно многогранникам с рис. 41 являются зеркальным отражением друг друга? Математика дает ясный и недвусмысленный ответ: эти многогранники будут идентичны и полностью наложимы один на другой!
Чтобы понять это, посмотрим мысленно на 2-пространство и на две находящиеся в нем асимметричные фигуры, изображенные на рис. 42. Двумерцы, живущие на плоскости, были бы так же озадачены этими фигурами, как Канта озадачивали его уши и их отражение в зеркале. Как могут быть эти фигуры столь похожи, спросят себя двумерцы, и в то же время неналожимы? Мы, жители 3-пространства, можем это понять. Фигуры в самом деле одинаковы. Это только несчастные Двумерцы, сидящие в своем двумерном мире, глядят на все через очки евклидова 2-пространства и не могут себе представить, что эти фигуры наложимы. Мы можем это доказать, просто взяв одну из них и предварительно перевернув, наложить на другую. Если мы вернем перевернутую фигуру в плоскость, расположив ее рядом с первой, то для двумерцев они обе будут абсолютно одинаковы во всех отношениях, включая «знак асимметрии». Поскольку двумерцы не могут себе представить 3-пространство, они подумают, что произошло чудо. Твердый асимметричный объект перешел в свое зеркальное изображение! И в то же время мы с этим предметом ничего не сделали. Мы его не растянули, не повредили, вообще никак не изменили. Мы только изменили его ориентацию в 2-пространстве — его положение по отношению к другим предметам в пространстве.
Два асимметричных многогранника с рис. 41 точно так же абсолютно одинаковы и могут быть наложены друг на друга. Только потому, что мы не можем взглянуть на них через трансцендентные очки 4-пространства, они кажутся нам разными. Если бы мы могли вращать их в гиперпространстве — перевернуть их, так сказать, через четвертое измерение, — то получили бы пару абсолютно одинаковых конгруэнтных многоугольников.
Кант, конечно, таких взглядов не выражал. Тем не менее я думаю, что если серьезно, используя всю имеющуюся информацию, попытаться воспринять окончательную точку зрения Канта на все сущее, то не будет никакого легкомыслия в предположении, что Кант вполне мог бы рассуждать таким образом, будь к его услугам математические знания XX столетия.
Лейбниц тоже, я убежден, интуитивно понимал еще не открытые тогда высшие евклидовы пространства. Он однажды рассматривал вопрос о том, что произошло бы, превратись весь мир и все вещи в нем в свои зеркальные изображения. Он пришел к заключению, что ничего бы не случилось. Не имело бы смысла говорить, что такое превращение вообще произошло, потому что нет способа заметить это изменение. Спрашивать, почему бог создал мир так, а не наоборот, значит, по словам Лейбница, задавать «совершенно никчемный вопрос».
Когда мы пытаемся ответить на этот вопрос с точки зрения высших евклидовых пространств, мы видим, что Лейбниц прав. Все, что требуется для того, чтобы «реверсировать» Флатландию на листке бумаги, это перевернуть листок и посмотреть на фигуры с другой стороны. Можно даже не переворачивать бумагу. Представьте себе Флатландию, расположенную на вертикальном листе стекла посреди комнаты. Когда вы смотрите на нее с одной стороны, это левый мир. Обойдите стекло кругом, и вы увидите правый мир.
Упражнение 11. Когда мистер Смит пытался открыть стеклянную дверь в банк, он с удивлением увидел на ней надпись большими черными буквами ДОХВ. Что значит это слово?
Флатландия совершенно не меняется, когда вы смотрите на нее с другой стороны. Происходит изменение только в расположении Флатландии в 3-пространстве относительно вас. Точно таким же образом житель 4-пространства может посмотреть на обыкновенный штопор с одной стороны и увидит правую спираль, а затем, зайдя с другой стороны, он увидит в том же самом штопоре левую спираль. Если бы он мог взять наш штопор, перевернуть и возвратить в наше пространство, нам показалось бы, что мы видим чудо. На наших глазах штопор исчез бы и появился в зеркальной форме.
Энантиоморфные предметы одинаковы не только по всем своим метрическим свойствам, они и топологически идентичны. Хотя правый узел на замкнутой петле нельзя переделать в левый, они топологически эквивалентны. Маленькие дети схватывают это быстрее, чем взрослые. Жан Пиаже и Бэрбел Инхелдер в своей книге «Детское представление о пространстве» приводят сильные доводы, подтвержденные экспериментально, в пользу того, что дети действительно выучиваются различать топологические свойства еще до того, как привыкают узнавать евклидовы свойства формы и разницу между правым и левым. Маленькие дети, например, когда их просят скопировать треугольник, очень часто рисуют круг. Углы и стороны треугольника для них менее заметны, чем свойство замкнутости кривой. Они не заметят разницы между цветным кружком, раскрашенным по часовой стрелке, и таким же кружком, раскрашенным против часовой стрелки. Их нетренированному мышлению кажется, по-видимому, что кружки одинаковы: они не то чтобы понимают, что кружки можно наложить перевернув, они просто не видят исходной разницы. Этим можно объяснить то, что даже «право-рукие» дети часто пишут наоборот печатные буквы и даже целые слова.
Может быть, ум наш потенциально более гибок, чем предполагал Кант. Наша неспособность четко представлять себе четырехмерные структуры вроде гиперкуба целиком может определяться тем фактом, что в человеческой памяти зарегистрирован только опыт, полученный в трехмерном мире. Может ли ребенок приучиться мыслить четырехмерными образами, если у него будут соответствующие игрушечные «учебные пособия»? Этот вопрос серьезно обсуждался некоторыми математиками, а в научно-фантастической литературе стал даже избитым.
А есть ли зеркальные отражения у гипертел 4-пространства? Да, эта двойственность существует на любом уровне. В одном измерении фигуры отражаются в точке, в двух измерениях — в линии, в трех измерениях — в плоскости. В четырехмерном мире отражение производится трехмерным телом и так далее для пространств еще более высоких размерностей. В каждом пространстве n-измерений «зеркалом» является «поверхность» с числом измерений n—1. В любом n-мерном пространстве асимметричную фигуру можно совместить с ее зеркальным изображением с помощью поворота в пространстве размерности n + 1. Может быть, наш гипотетический Кант XX столетия выразил бы это следующим образом: только «чистый разум» самого господа бога, который стоит над пространством и временем, видит, что пары энантиоморфных структур во всех пространствах идентичны и полностью наложимы друг на друга.
Герберт Джордж Уэллс первым построил научно-фантастический рассказ на «обращении» асимметричного предмета за счет поворота в четырехмерном пространстве. В «Истории Плэттнера» — одном из лучших произведений Уэллса — учитель химии по имени Готтфрид Плэттнер взрывает таинственный зеленый порошок, и взрыв этот забрасывает его прямо в 4-пространство. Что он увидел за девять дней пребывания во тьме «Другого Мира» с его огромным зеленым солнцем и странными неземными жителями, вы должны узнать сами, прочитав рассказ Уэллса. После девяти дней пребывания в 4-пространстве Плэттнер спотыкается о камень, бутылка с зеленым порошком взрывается у него в кармане и он переносится обратно в 3-пространство. Но его тело оказывается перевернутым: сердце у него теперь справа и пишет он левой рукой перевернутыми буквами.
Безмолвные образы, населяющие Уэллсово 4-пространство, это души тех, кто жил когда-то на земле. Убеждение, что души усопших населяют пространства высших размерностей, было во времена Уэллса широко распространено среди спиритов; время от времени медиумов просили переделать асимметричный предмет на его зеркальное изображение для доказательства того, что они действительно поддерживают непосредственный контакт с жителями 4-пространства. Генри Слэйд, ловкий американский медиум, пользовавшийся мировой известностью в конце XIX столетия, заявлял, что во время сеансов в его власти было переносить предметы в 4-пространство и возвращать их оттуда. Одним из его любимых фокусов было завязывание узла на замкнутой гладкой веревочной петле, а этот трюк (те, кто не предполагал мошенничества) могли объяснить только тем, что часть веревки побывала в пространстве более высокой размерности. Немецкий астроном и физик Иоганн Карл Фридрих Цоллнер, удивительно недалекий человек, так мало знал о возможностях ловких человеческих рук, что полностью поверил элементарным фокусам Слэйда и написал книгу «Трансцендентальная физика», которая, хотя автор того и не желал, получилась очень забавной. В ней он защищает Слэйда от обвинений в мошенничестве.
Чтобы получить определенное неопровержимое доказательство контакта Слэйда с духами 4-пространства, Цоллнер предложил однажды медиуму превратить правую винную кислоту в левую, чтобы она стала вращать плоскость поляризации проходящего через нее света в противоположном направлении. Он также принес Слэйду несколько конических спиральных раковин, закрученных вправо или влево, чтобы посмотреть, как Слэйд переделает их в зеркальные отражения. Путем поворота в 4-пространстве все это произвести было бы не труднее, чем завязать узел на гладкой петле, но фокусник выполнить этого не смог. Слэйду требовалось получить левовращающую винную кислоту, а ее можно было синтезировать только в лабораторных условиях, достать же эту кислоту оказалось нелегко; еще большую трудность представляло добывание раковин — точных дубликатов принесенных Цоллнером, но закрученных в обратную сторону. Как и следовало ожидать, ни один из этих решающих опытов не был выполнен, что, конечно, не поколебало ни на йоту веру Цоллнера в существование духов 4-пространства.
Возможно ли, что в один прекрасный день наука нащупает пути к постижению пространства более высокой размерности и окажется, что это нечто большее, чем математическая абстракция или дикая выдумка спиритов и оккультистов?
Может быть, но пока что на этот счет существуют лишь слабые надежды. В четырехмерном континууме теории относительности 3-пространство и время рассматриваются математически с помощью четырехмерной неевклидовой. геометрии. Это совсем не то же самое, что 4-пространство из четырех пространственных координат. С другой стороны, построены многие космологические модели, согласно которым трехмерное пространство изгибается в четырехмерном, причем изгиб этот, по крайней мере в принципе, можно проверить.
Эйнштейн, например, предложил однажды модель космоса, в которой астронавт, посланный в любом направлении по самому прямому из возможных путей, вернется рано или поздно в исходную точку. В этой модели наше 3-пространство рассматривается как гиперповерхность исполинской гиперсферы. Движение по ней можно сравнить с путешествием двумерца по поверхности шара.
В других космических моделях гиперповерхность изгибается в 4-пространстве подобно таким двумерным поверхностям, как бутылка Клейна и проективная плоскость. Это односторонние замкнутые поверхности без краев, которые закручиваются подобно листу Мёбиуса,
Предположим, например, что каждая точка сферы соединена с диаметрально противоположной точкой. Получится модель, которую топологи называют проективным 3-пространством. Космонавт, совершающий кругосветное путешествие по проективному 3-пространству, вернется в исходную точку в зеркально отраженном виде, подобно Плэттнеру у Уэллса.
Для понимания того, как это произойдет, очень поучителен следующий простой эксперимент. Вырежьте две абсолютно одинаковые бумажные полоски, наложите одну на другую, а затем (рассматривая их как одну полоску) скрутите концы на полоборота и склейте как показано на рис. 43. То, что получится, не будет листом Мёбиуса, но пространство между полосками — будет. Можно считать, что бумага прикрывает мёбиусову поверхность нулевой толщины. Теперь из темной бумаги вырежьте две маленьких спиральки и положите между бумажных полосок, удерживая скрепками, как показано. Их нужно расположить рядом и так, чтобы они закручивались в одном и том же направлении. Освободите одну спиральку от скрепки и обведите ее вокруг листа Мёбиуса, удерживая все время между полосками, пока она не вернется на старое место. Сравните обе спиральки. Вы увидите сразу же, что та, что совершила «кругосветное путешествие» ориентирована в другую сторону. Теперь эти спиральки нельзя наложить друг на друга. Конечно, если проделать еще один оборот, все восстановится. Обращение такого же сорта произойдет с космонавтом в 3-пространстве, если он совершит замкнуто круговое путешествие по космосу, который в четырех измерениях изогнут аналогично листу Мёбиуса.
Упражнение 12. На рис. 44 изображена бутылка Клейна — односторонняя поверхность без краев. Если бы асимметричный двумерец жил на такой поверхности (запомните, у нее нулевая толщина), мог бы ли он, совершив кругосветное путешествие по своему «космосу», вернуться в исходную точку в отраженном относительно окружающих предметов виде?
В спорных научных вопросах, когда имеющиеся экспериментальные данные скудны, мнение ученых подчас испытывает колебания с быстротой и изменчивостью дамских мод. Сегодня носят длинные юбки, через год — короткие, потом — опять длинные. Когда я учился в колледже, среди астрономов была модной мысль, что планеты во Вселенной встречаются очень редко. В то время бытовала теория, по которой считалось, что Земля возникла в результате маловероятного столкновения или сильного сближения двух звезд. Очень возможно (так думали тогда), что жизнь в космосе ограничена Солнечной системой, а быть может, и Землей. Сегодня просвещенное мнение ударилось в другую крайность. Астрономы теперь подозревают, что планеты во Вселенной — самое обычное дело. Может быть, их миллиарды в одной только нашей Галактике, и на миллионах из них существуют условия, способствующие поддержанию разумной жизни. Если так, то кажется вполне вероятным, что жители некоторых таких планет, обладающие научными знаниями, которые не уступают нашим или превосходят их, могут попытаться связаться с другими планетами.
На основе такого предположения в 1960 году началась разработка проекта «Озма». Антенну мощного радиотелескопа в Грин-Бэнке (штат Западная Виргиния) направляли на различные звезды нашей Галактики в надежде услышать радиопередачу из другого мира.
Фрэнк Дрэйк, радиоастроном, руководивший проектом (осуществление которого временно приостановлено), — давний почитатель книг Баума о стране Оз. Он дал имя проекту в честь Озмы — правителя мифической утопии Баума. Это подходящее имя. Положение страны Оз неизвестно. Ее обитатели — «гуманоиды», но не обязательно «люди из плоти», похожие на нас (свидетельством тому Железный дровосек и Страшила). Кроме того, страна Оз окружена со всех сторон непроходимой Мертвой пустыней, которая губит каждого, кто коснется хотя бы песчинки. У одного из персонажей книги Баума, короля Номов, был слуга по прозванию Длинноухий слухач. У этого «нома» были уши размером в несколько футов. Прикладывая такое ухо к земле, он мог слышать звуки за тысячи миль. Радиотелескоп Фрэнка Дрэйка — это его собственный Длинноухий слухач. Он терпеливо слушает, надеясь поймать какой-нибудь зашифрованный сигнал или просто повторную передачу последовательности чисел, которая может прийти только из разумного источника, понимающего универсальные законы математики. Перспектива услышать такой сигнал поистине сказочна! Трудно представить себе переворот, который его прием произведет в нашем антропоцентрическом, неразрывно связанным с Землей образе мышления.
Что должны мы делать, если услышим такой сигнал? Физик Ян Жэнь-нин (мы еще услышим о нем позднее) предложил: «Не отвечайте!» Такая реакция не очень типична. Математики и логики уже заняты разработкой процедур, с помощью которых две планеты смогут медленно, шаг за шагом выработать общий язык для разговора друг с другом. В 1962 году Ганс Фрейденталь, датский математик, опубликовал первую часть своей работы с довольно претенциозным названием «Линкос: построение языка для космических сношений».
Несомненно, что некий импульсный код может быть использован для регулярной связи. После того как контакт установлен, передача зрительных образов будет уже несложным делом. В самом простом случае необходимо будет только разбить прямоугольник на тысячи квадратных ячеек, как лист миллиметровки, а затем, просматривая его сверху вниз и слева направо, передать двоичным кодом из единиц и нулей, какие ячейки квадрата следует закрасить. Более подробные картинки, вероятно, даже движущиеся телевизионные изображения можно будет впоследствии передать с помощью сканирующего луча. Большие временные интервалы (радиосигналу требуется четыре года, чтобы долететь до ближайшей звезды) вносят осложнения, но никто не сомневается в том, что планеты будут в конце концов общаться так же или почти так же просто, как две земные нации, говорящие на разных языках, — это лишь вопрос времени.
Обратил ли читатель внимание на выражение «слева направо», которое было использовано при описании способа чтения картинки-прямоугольника? Если обитатели далекой планеты — назовем ее краткости ради планетой X — просматривают свой прямоугольник не слева направо, у них получится картинка, являющаяся зеркальным отражением той, которую мы намеревались передать. Каким образом сообщить им, какой смысл мы вкладываем в слова «слева направо»?
Предположим, мы уже установили постоянную связь с планетой X с помощью языка, подобного линкосу, и картинок. Мы попросили обитателей планеты просматривать полученные картинки «сверху вниз» и «слева направо». «Вверх» — направление от центра планеты, «вниз» — к центру. «Вперед — назад» — тоже не проблема. Но установив смысл выражений «вверх», «вниз», «вперед» и «назад», как объяснить им смысл третьей пары направлений, «налево» и «направо»? Можем ли мы быть уверены, передавая им, скажем, изображение правой спирали, что они получат изображение именно правой спирали? Если они придают словам «слева направо» тот же смысл, что и мы, картинки совпадут, но если их направление считывания противоположно нашему, правая спираль на картинке воспроизведется на планете X в форме левой спирали. Короче говоря, каким образом сможем мы передать на планету X наше понимание правого и левого?
Вопрос головоломный. Хотя проблема эта старая, собственного названия она не имеет. Я предлагаю назвать ее «Проблема Озма». Вот ее точная формулировка: существует ли способ передать значение слова «левый» языком кодированных импульсных сигналов? По условиям задачи мы можем говорить нашим слушателям что угодно и просить их выполнить любые эксперименты с одним непременным условием: не должно быть никакого асимметричного объекта или структуры, на которую они и мы могли бы посмотреть вместе.
Без этого условия нет никакой проблемы. Пусть, например, мы послали на планету X ракету с изображением человека, на котором есть пометки «верх», «низ», «право», «лево». Из картинки сразу станет ясно, что такое «лево». Или мы можем послать им поляризованный по кругу (то есть имеющий спиральную структуру) радиолуч. Жители планеты X построят антенны, позволяющие отличить поляризацию по часовой стрелке от поляризации против часовой стрелки, и общепринятое значение термина «левый» будет тотчас установлено. Наконец, мы можем попросить их направить телескоп на какое-нибудь асимметричное созвездие и использовать конфигурацию звезд для определения правого и левого. Все эти методы, однако, нарушают запрет на совместное наблюдение заведомо асимметричных объектов или структур.
Может ли инструкция по вычерчиванию какого-нибудь специального геометрического узора или графика, переданная на планету X, разъяснить ее обитателям земной смысл понятия «левая сторона»? Подумав немного, вы легко убедитесь, что ответ один: нет. Каждое асимметричное изображение имеет левую и правую формы. Пока мы и планета X не понимаем правое и левое одинаково, нет способов объяснить им, какую из двух картинок мы имеем в виду. Мы можем, например, попросить их нарисовать знак гаммадион, а потом сказать, что левая сторона та, в которую смотрит нижний конец знака. К несчастью, у нас нет способа растолковать им, какой именно знак мы подразумевали. Ведь он может быть закручен в ту или другую сторону. Пока мы не пришли к соглашению относительно правого и левого, мы не можем дать однозначных инструкций, как правильно нарисовать гаммадион.
Может быть, химия даст способ отличить правое от левого? Можем ли мы объяснить планете X, как различить те кристаллы кварца или киновари, которые вращают плоскость поляризации в определенную сторону? Да, но не по образцам таких кристаллов, даже если они будут найдены на планете. Как мы узнали из гл. 11, кристаллы могут иметь оптическую активность любого знака. Без предварительно согласованного понятия о правом и левом мы не сможем узнать, какой именно тип кристаллических образцов они сумеют вырастить в своих лабораториях.
Подобная двусмысленность возникает при использовании любых оптически активных стереоизомеров. Каждое химическое соединение, способное вращать плоскость поляризации, то есть соединение, атомы которого образуют асимметричную молекулу, также может существовать как в левой, так и в правой формах. Мы быстро можем достичь взаимопонимания с планетой X по вопросу о том, что такое асимметричная винная кислота, но, если они преуспеют в ее обнаружении или синтезе, как мы узнаем, правую или левую форму они получили?