Популярная физика. От архимедова рычага до квантовой механики - Айзек Азимов 18 стр.


Однако из опыта мы знаем, что все приспособления, которые служат для того, чтобы производить звуковую волну низкой частоты, также издают низкий тон, в то время как те, что производят звуковую волну высокой частоты, также издают высокий, пронзительный тон. Большие объекты с длинными периодами вибрации производят низкие тоны, в то время как подобные им маленькие объекты производят высокие: сравните звон церковного колокола со звяканьем колокольчика на салазках, низкий тон струны на контрабасе с пронзительностью струны на скрипке. В живой жизни сравните трубные звуки, которые издает слон, с писком мыши; «гудение» гуся — с чириканьем канарейки. Голос мужчины, с его более длинными голосовыми связками, глубже, чем голоса женщин и детей, с их более короткими. Но каждый индивидуум может изменить высоту звука, который он издает, регулируя натяжение своих голосовых связок (хотя он и не знает, что поступает именно таким образом), а звук свободно вибрирующей струны можно сделать более пронзительным, если потуже натянуть эту струну.

Это свойство пронзительности, или глубины тона, называется «высотой звука», и весьма очевидно, что человеческое ухо дифференцирует частоты звуковых волн по их высоте. По мере увеличения частоты звук, который мы слышим, кажется нам все более и более пронзительным. По мере уменьшения частоты, наоборот, слышимый нами звук кажется нам все более и более низким.

Частоту звуковой волны определить достаточно легко. Действительно, колебания камертона можно подсчитать несколькими различными способами, включая (наверное, самый простой метод) нанесение линии непосредственно самописцем, закрепленным на ножке камертона на перемещающейся миллиметровой бумаге, и подсчет волн, произведенных в единицу времени. Таким образом, и частота, и высота звука могут быть согласованы. Например, можно показать, что и механический камертон, и духовой камертон — трубочка с язычком, в которую дуют, а она издает звук — «стандартное ля», по которому музыканты настраивают свои инструменты, — имеют частоту 440 раз в секунду.

Для того чтобы вычислить фактическую длину волны звука некоторой высоты, можно использовать уравнение 11.1. Как мы видим из него, частота (ν) является равной скорости распространения волны V, деленной на длину волны (λ). Решая уравнение 11.1 для (λ), мы находим, что:

Чтобы сделать уравнение 12.1 более полезным, нам необходима дополнительная информация, а именно: скорость звука. Эта скорость может быть определена со значительной точностью в результате прямого эксперимента, который впервые был успешно осуществлен в начале XVII столетия.

Предположим, что на одном холме установлено орудие (пушка), а на другом холме размещены наблюдатели; расстояние между холмами может быть измерено и известно. Когда орудие стреляет, то вспышка будет замечена сразу (предположение о том, что свет распространяется настолько быстро, что его перемещение от одного холма до другого займет фактически нулевое время, сделанное еще в те времена, оказалось абсолютно правильным). Звук выстрела орудия, однако, будет услышан только спустя некоторый интервал времени, который можно измерить. Если разделить расстояние между орудием и наблюдателями на число секунд задержки между появлением вспышки и звуком от выстрела, то (при условии обладания точными часами) это и даст нам величину скорости звука.

Безусловно, если имеется ветер, то волны сжатия будут ускорены вперед движением воздуха или, наоборот, замедлены в зависимости от направления ветра. Однако это можно учесть, если сначала расположить орудие на одном холме, а затем наоборот. Таким образом, независимо от направления ветра мы можем исключить его влияние, взяв среднее значение из этих величин, то есть полученная величина (из-за взаимного исключения скоростей) и даст нам скорость звука в стоячем воздухе.

В настоящее время общепринятая скорость воздуха при нормальной температуре (скажем, 20 °С, или, что является эквивалентным, 68 °F) равна 344 метрам в секунду (или 1130 футов в секунду, или 758 миль в час). При изменении температуры эта скорость также немного изменяется. В холодный зимний день она может опуститься до 330 метров в секунду, в то время как в жаркий летний день она может подняться до 355 метров в секунду.

Разница температур оказывает достаточно важный эффект на скорость звука. В течение дня верхние слои атмосферы в целом более холодные, чем воздух вблизи поверхности Земли. Поскольку направленная вверх часть пучка звуковых волн проникает в холодную стратосферу, она замедляется; эффектом этого является то, что весь пучок отклоняется вверх. (Представьте себе, что вы идете, а кто-то захватывает вашу левую руку, замедляя эту часть вашего тела, при этом вы автоматически измените направление своего движения — влево.) Ночью ситуация обратная, поскольку верхние слои становятся теплее низких: верхняя часть пучка звуковых волн ускоряется, и весь пучок изменяет направление — отклоняется вниз. По этой причине ночью звук обычно можно услышать более ясно и на большем расстоянии, чем днем.

Однако если мы ограничимся комнатной температурой, то мы можем записать уравнение 12.1 в виде:

До недавнего времени скорость звука намного превосходила скорость любого транспортного средства, сделанного человеком, поэтому она не имела никакого практического применения. Однако с изобретением самолета и с постоянным увеличением скоростей, на которые он был рассчитан, важность скорости звука возросла, причем по причинам, напрямую не связанным со скоростью сообщения.

Скорость, с которой сжатая область восстанавливает себя до нормального состояния и сжимает следующую область, определяется скоростью естественного восстановления молекул после упругой деформации (сжатия); таким образом, именно эта скорость восстановления и определяет скорость звука. Также эта скорость определяет способность воздуха «уйти с пути» летящего на него самолета. По мере того как скорость самолета приближается к скорости звука, его скорость приближается к той, с которой молекулы воздуха могут «отступать». Самолет начинает «догонять» «отступающие» молекулы воздуха и по мере дальнейшего возрастания скорости все больше и больше настигает их. Такой самолет постоянно как бы сжимает воздух перед собой (или, по крайней мере, пока поддерживает данную скорость движения) по причине того, что воздух не может «уйти с его пути». Этот объем сжатого воздуха, находящийся перед самолетом, оказывает огромное влияние на структуру материала, из которого самолет сделан; одно время, в 1940-х годах, даже возникло мнение, что при достижении скорости звука самолет распадется. Появление понятия «звуковой барьер» обязано собой именно этому факту, как если бы скорость звука представляла собой стену, через которую самолет не сможет прорваться.

Отношение скорости движения объекта к скорости звука в среде, в которой перемещается объект, называется «числом Маха», названным так в честь австрийского физика Эрнста Маха (1838–1916), который в конце XIX столетия первым исследовал теоретические последствия движений на таких скоростях. Тело, двигающееся со скоростью звука, перемещается «со скоростью в один мах», со скоростью в две скорости звука — «в два маха» и так далее. Число Маха не представляет собой определенной скорости, оно зависит от природы, температуры и плотности среды, через которую перемещается объект. Для обычного воздуха при комнатной температуре один мах равен 344 метра в секунду, или 758 милям в час.

По мере улучшения конструкций самолетов они смогли противостоять все большим напряжениям на высоких скоростях, и 14 октября 1947 года специально подготовленный самолет «пробил звуковой барьер», двигаясь со скоростью более одного маха.

С тех пор были достигнуты скорости в три маха и больше. (Можно сказать, что астронавт, летящий над Землей со скоростью пять миль в секунду, двигается со скоростью 25 махов, если использовать сравнение со скоростью в воздушной среде. Однако астронавт перемещается сквозь вакуум, а вакуум в значительной мере не передает звук, поэтому число Маха в действительности к такому движению неприменимо.)

Самолет, двигающийся со «сверхзвуковой» скоростью (скоростью более одного маха), несет звуковые волны за собой, если так можно выразиться, так как он перемещается быстрее, чем они. Объемы сжатия соединяются, и вместо плавного нарастания от сжатия до разрежения и обратно, как в обычных звуковых волнах, возникает резкая граница разделения между объемом сильных сжатий и окружающей нормальной атмосферой. Эти сильные потоки сжатия, направленные назад в виде конуса, угол которого зависит от числа Маха, и называются «ударной волной». Подобные потоки ударной волны возникают также от летящих пуль, или, например, от зигзага молнии, или других движений, которые энергично расширяют воздух при скоростях больше чем один мах. (Кстати, ударная волна — пример непериодической формы волны.)

Однако если самолет, летящий со сверхзвуковой скоростью, замедлится или изменит направление, ударная волна превратится в обычные звуковые колебания, переносящие при этом объемы необычно сильного сжатия и разрежения. В этой серии колебаний звуковые волны расширяются и ослабляются по мере того, как они распространяются, но если они начинаются довольно близко от земли или, случается, направлены вниз, то они ударят в землю со значительной силой, произведя эффект, известный как «акустический удар».

Гром, который производит молния, — один из примеров звукового удара, «щелчок» пастушеского кнута тоже представляет собой миниатюрный звуковой удар, так как было установлено, что у правильно сделанного кнута кончик перемещается со скоростью выше скорости звука.

Обычно, когда мы говорим о скорости звука, мы подразумеваем скорость его распространения сквозь воздух. Однако звуковые колебания распространяются сквозь любое материальное тело, и скорость их распространения изменяется в зависимости от природы этого тела. Межмолекулярные силы в жидкостях и твердых телах гораздо более сильные, чем в газах, а значит, восстановление их после сжатия происходит гораздо быстрее. Следовательно, звук распространяется в жидкостях и твердых телах с гораздо большей скоростью, чем в любом газе, и чем более твердой материей обладает тело (и, следовательно, с чем более сильными межмолекулярными силами), с тем большей скоростью звук распространяется сквозь него. В воде звуковые колебания распространяются со скоростью 1450 метров в секунду (3240 миль в час), а в металле — со скоростью приблизительно 5000 метров в секунду (или 11 200 миль в час).

В музыкальных инструментах звуки различной высоты тона могут быть воспроизведены посредством удара или щипка за струны различной длины и толщины, как это делается на фортепьяно или арфе, или, как в случае со скрипкой, используя немного струн, но изменяя их эффективную длину, зажимая пальцем один конец струны в различных точках, или позволяя звуковой волне заполнять трубки, которые могут удлиняться или сокращаться в зависимости от положения руки исполнителя, как это делается в тромбоне; или закрывая и открывая дополнительные объемы в трубке, закрывая отверстие пальцем, как во флейте, или нажимая на вентиль, как в трубе.

Когда на каком-либо инструменте берутся две ноты вместе или одна за другой, их комбинация кажется нам иногда приятной, а иногда — неприятной. Это, конечно, вопрос очень субъективный, к тому же основанный на культурном наследии слушателя, поскольку мы любим то, к чему мы привыкли, и множество типов музыки, начиная от рок-н-ролла и кончая, например, традиционной японской, могут показаться неприятными для непосвященного, но весьма нравятся их приверженцам. Однако если мы ограничимся рассмотрением «серьезной» классической западной музыки, то мы можем прийти к некоторым обобщениям и заключениям относительно ее.

Если две ноты прозвучали вместе, то результатом этого не являются два раздельных ряда звуковых волн, каждый из которых путешествует сквозь воздух независимо от другого, — мы имеем результирующую волну, которая произошла от сложения двух волн вместе.

Чтобы еще упростить, предположим, что мы каким-то образом создали две звуковых волны, каждая из которых одной и той же частоты, но звучит таким образом, что отстает от другой на половину длины волны. Всякий раз, когда одна звуковая волна формирует область сжатия в одной точке, другая — формирует там же область разрежения, и наоборот. Два эффекта взаимоуничтожают друг друга, и воздух не двигается. В результате взятые вместе два звука производят тишину; такое явление называется «интерференцией». Трудно представить это себе, если мы говорим о продольных волнах. Однако если изобразить продольные волны как аналогичные им поперечные волны (поскольку для данной цели такая замена вполне приемлема), то интерференцию достаточно легко изобразить. Во всех случаях, когда синусоида одной звуковой волны идет вверх, синусоида другой звуковой волны идет вниз, и если сложить эти два участка, то в результате мы получим ровную линию, то есть никакой волны вообще.

С другой стороны, если две волны одной и той же частоты звучат точно в фазе, они складываются друг с другом, так что сжимаемые области еще больше сжимаются, а разрежаемые области разрежаются еще больше, чем это бы было, если бы любой из этих звуков воспроизводился в одиночку. На аналогичной поперечной волне гребни и впадины отдельных волн совпадают и суммарные гребни будут выше, а впадины глубже, чем у любой из них. Наше ухо услышит один звук той же высоты тона, но более громкий. Это явление называется «укреплением» (reinforcement).

На самом деле полная интерференция, или укрепление, маловероятна. Вместо этого две или более волн объединяются, укрепляясь здесь, уменьшаясь там, и в результате формируют окончательные образцы очень сложной формы, которая нисколько не будет походить на периодические синусоидальные волны ни одной из исходных нот. Однако сколь сложными бы эти образцы ни были, они останутся периодическими. То есть если взять небольшой повторяющийся отрезок из части образца, то повторением этого отрезка можно составить весь образец целиком.

В 1807 году французский физик Жан Батист Жозеф Фурье (1768–1830), изучая общие формы волны, показал, что любой периодический образец волны, каким бы сложным он ни казался, может быть разложен соответствующими математическими методами на составляющие его синусоидальные волны. Такие математические методы получили название «гармонический анализ», поскольку их можно применять по отношению к музыкальным звукам. (Образцы волн музыкальных звуков составлены из отдельных синусоидальных волн, которые демонстрируют организованный набор взаимосвязей. В тех случаях, когда этого не происходит, то есть когда составляющие синусоидальные волны выбираются и объединяются хаотически, результатом является не музыка, а «шум». Разница аналогична той, что существует между сложной, но правильно организованной геометрической фигурой и набором тех же линий, но начерченных случайным образом, — в последнем случае мы получаем обыкновенные каракули. Однако методы, разработанные Фурье, могут использоваться и для анализа образцов шумовых волн, поэтому для обозначения их часто употребляют более нейтральный термин — «волновой анализ».)

Давайте ограничимся рассмотрением очень простых примеров и не будем вовлекать сложные математические вычисления. Рассмотрим две ноты различной высоты тона, а потому — различной частоты, звучащие вместе. Сжатые области звуковой волны (или гребни, если мы будем говорить в более легко визуализируемых аналогиях поперечной волны) двигаются с более короткими интервалами — в случае ноты с более высокой частотой, а значит, они настигнут таковые звуковой волной с более низкой частотой.

Предположим, что одна нота имеет частоту 250 раз в секунду, а другая нота — частоту 251 раз в секунду, и предположим, что они начинают звучание в фазе. Первый гребень появляется одновременно у обеих нот. Второй гребень у ноты 251/с появляется только чуть-чуть раньше, чем второй гребень у ноты 250/с. Третий гребень появляется еще раньше, а четвертый гребень — раньше, чем третий. Однако в конце первой секунды и одна и другая ноты закончили точно 250 и 251 колебание соответственно. Они опять в фазе, но нота 251/с получает в каждую секунду один полный дополнительный гребень. И за каждую следующую секунду нота 251/с получает еще один новый дополнительный полный гребень.

В точке, где две ноты находятся в фазе, гребень к гребню, имеется короткий период полного укрепления, и нота звучит громко. По мере прохождения секунды и падения гребней они все более и более выходят из фазы, то есть интерференция все более и более увеличивается, а звук становится более тихим. В полуминутной точке, на полпути между двумя синфазными периодами, ноты полностью выходят из фазы и гребень одной располагается напротив впадины другой ноты; в этой точке имеется короткий период полной интерференции. Результатом ее является полное затухание и пропадание звука, причем периодичность затухания происходит с интервалом, следующим за тем, когда гребни совпадают. Такое периодическое изменение громкости, когда две ноты звучат вместе, называется «биением».

Давайте рассмотрим еще две ноты с частотами 250/с и 252/с соответственно. Тогда после половины секунды одна нота закончит 125 колебаний, а другая — 126 колебаний, и они возвратятся в фазу, соответствующую гребню. Это будет повторяться каждую половину секунды, то есть будут получаться два биения в секунду. Число биений в секунду, в случае одновременного звучания двух нот, равно разности в частоте этих двух нот.

Если биения настольно редкие, что их можно различимо услышать, то они создают звуковые комбинации, неприятные для слуха. Наиболее неприятным является, очевидно, 30 биений в секунду. Однако в том случае, когда число биений в секунду больше 60, они взаимопроникают друг в друга, и для человеческого уха их комбинация кажется приятной или гармоничной.

Теперь давайте рассмотрим две ноты, у которых одна имеет частоту точно в два раза больше другой. Например, первая имеет частоту 220/с, а вторая — 440/с; отношение частот равно 1:2. Число биений, когда ноты звучат вместе, равно 440—220, или 220 раз в секунду. Биения дублируют ноту более низкого тона, так что кажется, что две ноты «сплавляются» друг с другом и начинают представлять собой одну и ту же ноту. Они гармонируют друг с другом.

Именно Пифагор был первым, кто заметил, что гармонирующие ноты связаны между собой целочисленными отношениями небольшой величины. У него не было никакой аппаратуры для непосредственного измерения самой частоты, но он рассмотрел струны различной длины. Он обнаружил, что две струны с длинами, относящимися как 1:2, производят приятную комбинацию, так же как струны с соотношением длин 2:3 и 3:4.

(Результаты этих наблюдений за звуком были истолкованы Пифагором с мистической точки зрения. Он рассматривал роль взаимодействия небольших целочисленных отношений в создании благозвучий в соответствии со своими взглядами о том, что вся Вселенная управляется числами. Он и его ученики предполагали, что и сами планеты способны создавать звуки — так называемую «музыку сфер», ноты в которой основаны на их расстояниях относительно Земли. Наука не могла освободиться от этих заблуждений в течение 2000 лет.)

Предположим тогда, что мы начинаем с ноты, частота которой равна 440/с (стандартная частота для музыкантов); назовем эту ноту А. Нота вдвое большей частоты звучит настолько подобно этой, что мы можем предположить, что это — тоже А, то есть мы можем использовать эту букву для обозначения ноты с частотой, равной половине А. Таким образом, фактически мы получим целый ряд значений такого А, с частотами, равными 110/с, 220/с, 440/с, 880/с, 1760/с и так далее, расширяя диапазон, из которого мы выбираем, на неопределенное значение вверх и вниз.

Между любыми двумя последовательными нотами А мы можем поставить другие ноты с частотами, которые состоят в некоторых других последовательных арифметических отношениях к нотам А и друг к другу. Общепринято подставлять в этот интервал шесть других нот; они обозначаются буквами В, С, D, Е, F и G. Таким образом, в интервале от А до А мы имеем ноты: А, В, С, D, E, F, G, А. В интервале от А до А располагаются восемь нот (считая и А), между которыми находятся семь интервалов. Поэтому интервал от А до А называется октавой (от латинского слова, означающего «восьмой».) Другие интервалы называются по-английски. Интервал от С до G (С, D, E, F, G), который включает в себя пять нот, называется «пятым», в то время как интервал от С до F — «четвертым». В нашей стране, да и во всем остальном мире, кроме США, общепринята латинская система обозначения музыкальных интервалов. Согласно ей сама нота С (представляющая собой интервал от себя до себя) называется «прима», интервал от С до D называется «секунда», от С до Е — «терция», от С до F — «кварта», от С до G — «квинта», от С до А — «секста», от С до В — «септима» и, наконец, от С до С — «октава». (Все названия музыкальных интервалов происходят от латинских слов, означающих соответственно: «первый», «второй», «третий», «четвертый», «пятый», «шестой», «седьмой» и «восьмой». — Пер.)

Частоты, соответствующие нотам, в диапазоне от А (220/с) до А (880/с):

Диапазон от 220/с до 440/с составляет одну октаву, а диапазон от 440/с до 880/с — другую октаву. Каждая нота в верхней октаве представляет собой удвоенную по частоте соответствующую ноту в более низкой октаве, так что интервал от В до В представляет собой октаву, так же как интервал от С до С, от D до D и так далее. Если вы запомните, что удвоение частоты создает ноты для каждой следующей более высокой октавы, а деление пополам — ноты для каждой более низкой октавы, вы сможете написать частоты для любой ноты в любой октаве.

Если мы послушаем ноты, идущие последовательно в пределах любой октавы, то обнаружим, что они звучат точно так же, как соответствующие ноты в пределах любой другой октавы: выше или ниже. Стандартная клавиатура фортепьяно охватывает диапазон немногим более семи октав; если мы будем нажимать одну за другой белые клавиши, то легко обнаружим, что одна и та же «мелодия» последовательно будет повторяться семь раз, только переходя на все более высокие тоны звуков.

Все частоты связаны между собой отношениями, которые могут быть выражены в небольших целых числах. Отношение G к С, например, равно 396:264, или 3:2; а отношение F к С равно 352:264, или 4:3. Именно эти простые отношения изучал Пифагор, и именно простота отношений обосновывает величину биений, при которых ноты «укрепляются» и хорошо «смешиваются» между собой. Именно поэтому квинты (3:2) и кварты (4:3) очень часто используются для построения благозвучных интервалов между последовательными нотами.

Но тогда также и отношения между тремя нотами (сочетание которых называется «основным трезвучием» или «аккордом»), С, Е и G, равное 264:330:396, или 4:5:6, будет благозвучным. F, А и С также составляют мажорное трезвучие, так же как и G, В и D. Фактически интервалы между нотами задуманы таким образом, что каждая нота может быть частью одного из этих трех мажорных трезвучий.

Если мы рассмотрим отношение частот смежных нот, то оказывается, что В:А относится как 9:8. Отношения между D и С, так же как и G:F, равны 9:8. Отношения E:D и A:G — не совсем такие же, но очень близки — 10:9. Другими словами, из семи интервалов между нотами в пределах одной октавы пять имеют примерно равный размер; мы можем назвать их «целыми интервалами».

Частотное отношение F:E, однако, является только половинкой, поскольку оно равно 352:330, или 16:15; это также истинно и для отношения С:В. (Более просто можно объяснить это другими словами. Отношение 9:8 представляет собой увеличение в частоте на 12,5 процента, а отношение 10:9 представляет собой увеличение на 11,1 процента. Однако отношение 16:15 представляет собой увеличение только на 6,7 процента.) То есть при переходе от В к С или от Е к F мы преодолеваем только «половину интервала».

Если мы начнем с А и будем подниматься по октаве вверх через ноты В, С и так далее, то мы будем проходить интервалы в следующем порядке: тон, полутон, тон, тон, полутон, тон, тон, тон, полутон, тон, тон, полутон и так далее. Полутона последовательно отделены двумя целыми тонами, затем — тремя целыми тонами, двумя тонами, тремя тонами и так далее.

Назад Дальше