Популярная физика. От архимедова рычага до квантовой механики - Айзек Азимов 17 стр.


Для любой взятой синусоиды расстояние от некоторой произвольной точки до следующей такой же — величина постоянная. Эта длина (для простоты возьмем длину от гребня до гребня) определяет «длину волны». Длина волны обычно обозначается греческой буквой «лямбда» (λ).

Если узлы не отличаются друг от друга (а в физике они обычно не различаются), то расстояние между последовательными узлами равно половине длины волны (полуволне). Если восходящий узел одной волны при наложении совпадает с нисходящим узлом другой волны (такое иногда тоже случается), то говорят, что волны находятся «в противофазе», но расстояние между последовательными узлами все равно составляет половину длины волны.

В данной волне гребень двигается по направлению наружу по поверхности воды (хотя вода непосредственно, хочу повторить, не двигается наружу вместе с ним); расстояние, которое он проходит за одну секунду, называется скоростью распространения волны.

Давайте представим себе, что скорость распространения данной волны составляет десять метров в секунду и что длина волны (то есть расстояние от гребня до гребня) равняется двум метрам. Если мы обратим наше внимание на некоторую точку на поверхности воды, мы увидим, что в ней через некоторое время образуется гребень. Он начинает перемещаться, и, когда он переместится на два метра по направлению наружу, его место займет второй гребень, еще два метра вперед, и в точке появится третий гребень и так далее. После того как пройдет одна секунда, первоначальный гребень окажется на расстоянии в десять метров, а его место займет пятый гребень (10 разделить на 2).

Количество гребней (или количество впадин, восходящих узлов, нисходящих узлов или любых других последовательных точек в фазе), которые прошли через данную точку за одну секунду, называется «частотой колебаний» волны. Частота обычно обозначается греческой буквой «ню» (ν).

Из того, что я только что сказал, должно быть ясно, что скорость распространения волны, поделенная на ее длину, равняется частоте ее колебаний, то есть:

Единицы измерения скорости в системе МКС — метры в секунду, единицы измерения длины волны — метры. Поэтому единицы измерения частоты получаются равными (м/с)/м, или 1/с. Поскольку в алгебре 1/a называется величиной, «обратной» a, величину 1/с иногда называют «обратными секундами». Более часто, конечно, мы просто говорим «в секунду». Например, частота упомянутой выше волны может быть записана как 5/с и читаться как «5 раз в секунду» или как «5 обратных секунд».

Еще на сравнительно ранней стадии развития поисков знания у исследователей возникли мысли о том, что звук представляет собой один из видов волнового движения. Впервые эксперименты со звуком начали проводить еще древние греки, и замечательно то, что созданная ими для изучения звука ветвь физики с самого начала развивалась в правильном направлении даже с точки зрения современных критериев.

Уже в VI столетии до н.э. Пифагор Самосский изучал звук, который издают струны. Как мы можем заметить, если струну «ущипнуть», то она начинает вибрировать. Движения струны выглядят как размытое пятно, но даже в этом случае можно получить некоторые полезные факты, связанные со звуком. Похоже на то, что ширина этого размытого пятна, созданного движением струны, соответствует громкости звука. По мере того как вибрация утихает, а ширина пятна сужается, звук становится менее громким. А когда вибрация прекращается, не важно — естественным замедлением или резкой остановкой струны рукой, — звук также прекращается. Кроме того, легко выяснить, что чем короче натянутая струна, тем более быстро она вибрирует, и более быстрая вибрация, как кажется, производит более пронзительный звук; в то же время более длинная струна, как кажется, вибрирует медленнее, а звук издает более низкого тона.

В 400 году до н.э. Архит Тарентский (ок. 420–365 до н.э.), член пифагорейской школы, предположил, что звук производится благодаря соударению тел — быстрое движение порождает высокий тон, а медленное движение — низкий тон. Примерно в 350 году до н.э. Аристотель предположил, что вибрирующая струна ударяет по воздуху и что та часть воздуха, которая была подвержена удару струны, в свою очередь, перемещается от удара, чтобы ударить соседнюю часть, которая, в свою очередь, ударяет следующую часть и так далее. Аристотель далее пришел к выводу, что воздух является средой, необходимой для того, чтобы звук распространялся, и что в безвоздушном пространстве никакого распространения, а значит, и самого звука не будет. (И в этом Аристотель был, несомненно, прав.)

Поскольку вибрирующая струна, двигаясь в быстром темпе, ударяет воздух не однажды, а многократно, то воздух должен провести не один удар, а целый длинный ряд ударов. Римский архитектор Витрувий, живший в I столетии до н.э., предположил, что воздух просто не двигается, а вибрирует и что он ведет себя таким образом в ответ на колебания струны. Он утверждал далее, что именно эти воздушные колебания мы и слышим как звук.

Ну и наконец, приблизительно в 500 году н.э. римский философ Северин Боэций (480–524?) сделал сравнительную аналогию проводимости звука сквозь воздух с волнами, которые возникают в спокойной воде от брошенного туда камня. Несмотря на то что данная аналогия достаточно справедлива и до сих пор можно рассматривать распространение звука в воздушной среде именно таким образом (и именно так, например, мы рассматриваем его в этой книге), все-таки следует отметить, что такой подход надо рассматривать только как предварительный, потому что между жидкостными волнами и звуковыми волнами на самом деле имеются достаточно важные различия.

Поперечные волны, типа жидкостных волн, могут появляться только при некоторых определенных условиях. Эти волны представляют собой такие состояния тел, при которых одна часть тела (а точнее — его поперечное сечение) перемещается боком относительно другой части, а затем совершает такое же движение, но в противоположную сторону. (Можно воспроизвести поперечную волну, если взять очень высокую стопку карт и переместить каждую карту вбок на нужное расстояние.) Такое поперечное движение производится определенным типом силы, называемым «сдвиг». Но для того чтобы воздействие сдвига закончилось появлением поперечной волны, необходимо, чтобы силе, производящей сдвиг, противостояла другая сила, которая сдвигает части тела обратно, на первоначальные места.

Например, в пределах твердого тела удар может заставить одну часть материи тела сдвигаться вбок относительно соседней части. Однако сильные силы сцепления между молекулами твердого тела, которые имеют тенденцию удерживать каждую молекулу на одном месте, будут возвращать сдвинутую часть. Она отскакивает назад, проходит свое «нулевое» положение, отскакивает назад снова, проходит мимо «нулевого» положения и так далее. Явившаяся результатом этого вибрация распространяется таким же образом, каким волны распространяются по поверхности жидкости; результатом является возможность передать поперечные волны через материю твердого тела.

Однако в жидкостях и газах силы сцепления гораздо более слабые, чем в твердых телах, и не способны восстановить сдвиг. Если мы переместим часть воды или воздуха вбок относительно соседней части, то некоторое дополнительное количество воды или воздуха просто натечет в область, которую перемещающаяся часть оставила «пустой», а новое взаимное расположение частей останется. Поэтому в телах жидкостей не существует никаких поперечных волн.

Точнее говоря, поперечные волны будут перемещаться по горизонтальной верхней поверхности жидкостей, поскольку там мы имеем особый случай — существование внешней силы — силы тяжести, которая сопротивляется сдвигу «вверх и вниз». Однако в пределах тела жидкости сила тяжести не может выполнять эту работу, поскольку каждый из фрагментов воды поддерживается на поверхности окружающей его водой. Так как плотность каждой частицы воды равна плотности окружающей ее воды, то вес каждой частицы воды равен нулю, и она не отвечает на воздействие силы тяжести. Если часть воды в пределах тела жидкости поднята на сдвиг, она остается в новом положении, несмотря на силу тяжести. Таким образом, распространение поперечных волн ограничено поверхностью жидкости, а так как газы не имеют никакого определенного объема и поэтому никакой определенной поверхности, то из этого следует, что поперечные волны не передаются газами ни при каких условиях.

Следовательно, если звук передается сквозь воздух в форме волны (а все свидетельствует, что так оно и есть), то форма этой волны не может быть поперечной. Логично было бы предположить существование альтернативной формы волны, такой, чтобы она состояла из периодических сжатий и разрежений.

Рассмотрим, например, колебания камертона. Ножка камертона создает быстрые периодические колебания, перемещаясь влево-вправо, влево-вправо и так далее. По мере того как она перемещается вправо, молекулы воздуха, находящиеся непосредственно справа от нее, смещаются, сдвигаясь вместе и формируя маленький объем сжатия. Давление в пределах этого сжатого объема больше, чем в соседнем объеме нормального воздуха. Молекулы в сжатом объеме «разворачиваются» и «толкают» молекулы примыкающего к ним объема, сжимая его. Соседний объем, по мере того как «разворачивается», сжимает следующего за ним соседа и так далее. Таким образом, данный объем сжатия распространяется наружу но всех направлениях, формируя вокруг источника возмущения расширяющуюся сферу так же, как в жидкости вокруг источника возмущения формируется расширяющийся круг, состоящий из гребней воды. (Атмосфера является трехмерной средой, а поверхность воды — двумерной, вот почему мы в одном случае имеем расширяющуюся сферу, а в другом случае — расширяющийся круг.)

Тем временем ножка камертона, которая переместилась вправо и создала расширяющийся объем сжатия, перемещается влево. Направо от ножки образуется большее количество места, а находящийся там объем воздуха расширяется и становится более разреженным. Давление, которое в соседнем, неразреженном, объеме выше, толкает воздух в разреженное место и разрежается в процессе этого само. Таким образом, объем разрежения расширяется по направлению наружу, вслед за объемом сжатия.

И снова ножка камертона перемещается вправо, затем — опять влево, снова — вправо, то есть таким образом, что объемы сжатия и разрежения в быстром чередовании следуют друг за другом по направлению наружу все то время, пока ножка камертона продолжает вибрировать. Каждый период движения ножки (одно движение назад и одно вперед) вызывает образование одной комбинации «сжатие — разрежение».

В этих волнах, основанных на принципе «дополнительного сжатия и разрежения», индивидуальные молекулы воздуха двигаются в одном направлении по мере сжатия, а затем в обратном направлении по мере разрежения; объемы сжатия и разрежения двигаются по направлению наружу и распространяются в направлении, параллельном возвратно-поступательному движению молекул. Такие волны, в которых частицы двигаются параллельно распространению волны в большей степени, чем перпендикулярно в направлении к нему, называются «продольными», или «компрессионными», волнами.

Продольные волны гораздо труднее проиллюстрировать и труднее воспринять, чем поперечные волны, поскольку в обычной жизни мы не сталкиваемся ни с какими внешними проявлениями их существования, как это было, например, с жидкостными волнами. Однако, поняв детально принцип распространения поперечных волн, мы можем по аналогии перенести этот принцип и на продольные волны.

Точки максимального сжатия аналогичны гребням поперечных волн, а точки максимального разрежения — впадинам. Между ними имеются области, где давление на мгновение становится нормальным, и мы можем их сопоставить.

Расстояние между точками максимального сжатия (или между точками максимального разрежения) называется длиной продольной волны. Количество точек максимального сжатия (или максимального разрежения), проходящих через данное положение за одну секунду, называется частотой продольной волны.

Так как молекулы жидкостей и твердых тел, как и молекулы газов, при сжатии формируют противосилу, старающуюся восстановить их форму, продольные волны могут передаваться и в газах, и в жидкостях, и в твердых телах. Звуковые волны особенно хорошо распространяются в воде и металле, равно как и воздушным путем. (Волны, произведенные в теле Земли колебаниями, вызванными землетрясениями, состоят из обоих типов волн — и поперечных и продольных. Они передаются твердой материей Земли, но было выяснено, что, когда волны проникают на некоторую глубину ниже поверхности земли, только продольные продолжают распространяться на дальние расстояния, в то время как поперечные волны внезапно и полностью останавливаются. Именно благодаря этому геологи пришли к выводу, что Земля содержит жидкое ядро, и оказались способными измерить его диаметр со значительной точностью.)

Однако звуковые волны не могут переноситься при полном отсутствии молекул. Если мы поместим электрический звонок под колокол воздушного насоса, то сначала мы будем слышать его звон через стекло, но затем, по мере того как воздух будет откачиваться, звучание звонка будет становиться все более и более тихим. Язычок может продолжать неистово ударять по звонку, и сам звонок может даже начать вибрировать, но из-за отсутствия воздуха образование продольных волн невозможно. В результате никакого звука не будет слышно.

(Часто повторяют, что Луна, на которой практически нет атмосферы, является беззвучным миром. Однако звук может быть передан по поверхности Луны, и космонавт сможет услышать отдаленный взрыв, если он надлежащим образом создаст контакт с ее поверхностью.)

Предположим, что мы рассматриваем звуковую волну, в которой последовательность сжатий и разрежений является регулярной. Она была бы аналогична поперечной волне, имеющей форму правильной синусоиды. Такую звуковую волну слышим мы как устойчивую музыкальную ноту, и именно такой звук производит камертон. Действительно, если мы закрепим какой-либо пишущий инструмент на ножке камертона таким образом, что он сможет писать на рулоне бумаги, перемещаемой с постоянной скоростью в направлении, перпендикулярном к направлению вибрации ножки, то на бумаге получится изображение синусоидальной волны.

Камертон может издавать звуки, которые отличаются по громкости. Если мы ударим его лишь слегка, он издаст мягкий звук; если же мы ударим ножку камертона сильнее, то он испустит звук, который будет совершенно идентичным первому и будет отличаться от него только уровнем громкости. Когда мы слегка ударяем камертон, его ножка двигается вперед и назад по сравнительно небольшой дуге; при более сильном ударе ножка будет двигаться вперед и назад по гораздо большей дуге. Согласно тому, как и должны проявлять себя простые гармонические колебания, эти два движения будут иметь одинаковый период, несмотря на разницу в амплитуде, иначе говоря, одинаковое количество сжатий и разрежений в одну секунду. То есть частота произведенного звука в любом случае будет той же самой.

Однако тот камертон, который мы ударили более сильно, по мере перемещения по большей дуге сжимает воздух более активно и сильно. Поэтому более громкая нота отличается от более тихой ноты тем, что сжимаемые объемы в первой — более сжаты, а разрежаемые объемы — более разреженны. Разница в степени сжатия в продольной волне аналогична разнице в амплитуде в поперечной волне. Это можно легко визуализировать, если снова провести эксперимент с камертоном и прикрепленной к нему ручкой. Слабо вибрирующая ножка нарисует синусоиду маленькой амплитуды, а сильно вибрирующая, то есть двигающаяся по большей луге в результате более сильного удара, отметит синусоиду большей амплитуды.

Чтобы сжать воздух, преодолевая сопротивление его давления, потребуется затратить энергию. Таким образом, сжатый воздух является аккумулятором энергии, то есть может запасать некоторое количество энергии, которую он может израсходовать, расширяясь и толкая все, что находится в непосредственной близости от него. По этой причине звуковые волны могут рассматриваться как форма энергии.

Чем сильнее сжат воздух, тем больше количество энергии, которую он содержит и может израсходовать. Если подойти к данному вопросу с другой стороны, то можно сказать, что вибрирующий камертон обладает кинетической энергией, которая тратится на сжатие воздуха. Если ножка камертона колеблется по большей дуге, но период ее колебаний заканчивается в одно и то же время, что и у ножки, двигающейся по меньшей дуге, то это означает, что она перемещается с большей средней скоростью и обладает большим количеством кинетической энергии, которую она может израсходовать на сжатие воздуха. Независимо от точки зрения, с которой мы подходим к данному вопросу, мы можем прийти к выводу, что громкость — вопрос количества энергии и что громкий звук содержит большее количество энергии, чем тихий.

Громкость, или «интенсивность звука», измеряется в единицах количества энергии, проходящих каждую секунду через один квадратный сантиметр площади области, находящейся перпендикулярно к направлению распространения звука. Энергия, израсходованная в единицу времени, представляет собой мощность, но величина мощности, которую несет с собой звук, очень мала. Для того чтобы показать, насколько она мала, давайте рассмотрим некоторые единицы измерения мощности.

В системе единиц измерения МКС ватт — единица мощности, равен одному джоулю в секунду. Мы хорошо знакомы с ваттами применительно к мощности электрических лампочек; мы знаем, что про лампочку мощностью 75 ватт нельзя сказать, что она слишком яркая для чтения, а что касается лампочки мощностью 40 ватт, то она выглядит довольно-таки тускло. Ночные «дежурные» фонари достаточно яркие, чтобы хоть чуть-чуть рассеять глубокую тень и позволить нам добраться до ванной, не стукаясь о мебель, имеют мощность в ¼ ватта. Один микроватт — это 1/1000000 часть ватта, то есть такой «дежурный» свет имеет мощность в 250 000 микроватт.

С этой позиции обычная разговорная речь обладает мощностью не более 1000 микроватт, а тихие звуки опускаются до незначительных долей микроватта.

Человеческое ухо скорее обнаруживает различия в громкости звуков по отношению друг к другу, чем чувствует фактическую разницу. Таким образом, звук мощностью в 2000 микроватт будет казаться некоторым громче, чем звук мощностью в 1000 микроватт, но звук мощностью в 3000 микроватт не будет казаться настолько же громче предыдущего. Потребуется звук мощностью в 4000 микроватт, чтобы создать у нас впечатление возрастания мощности настолько, насколько звук мощностью в 2000 микроватт громче, чем звук мощностью в 1000 микроватт. Чтобы достичь звука, который является настолько же более громким, насколько громче предыдущий 4000-микроваттный звук, мы должны усилить его до величины в 8000 микроватт. Отношения 2000/1000, 4000/2000 и 8000/4000 равны друг другу, но различия не одинаковы, а наше ухо судит о звуке не по величине, а по различию.

Все это означает, что человеческое ухо воспринимает не мощность звука, а логарифм этой мощности. Когда один звук обладает мощностью в десять раз большей, чем мощность другого звука, отношение мощности первого к мощности второго равно 10, а десятичный логарифм этого отношения равен 1. Разница в интенсивности звука, таким образом, является равной одному «белу», единице, названной так в честь Александра Грэхема Белла (1847–1922) — ученого, изучавшего физику звука и изобретателя телефона. В соответствии с вышесказанным мы получаем, что увеличение мощности звука в 100 раз дает нам увеличение громкости на 2 бела, увеличение мощности в 1000 раз — 3 бела и так далее. Этот тип единицы измерения отражает логарифмические свойства восприятия звука человеческим ухом.

Бел представляет собой довольно крупную единицу измерения, чтобы быть удобной. Обычно употребляют единицу, равную десятой части бела и называемую «децибелом». Когда говорят, что один звук громче другого на один децибел, это означает, что первый звук мощнее второго в 1,26 раза, поскольку логарифм 1,26 примерно равен 0,1.

Из-за того что даже громкие звуки несут в себе очень малое количество энергии, звуковая энергия не является чем-то, чего мы обычно опасаемся. Энергии, заключенной в раскате грома, вполне может быть достаточно, чтобы заставить объекты заметно вибрировать. Телефон представляет собой пример того, как человеческая изобретательность сумела использовать преобразование звуковой энергии в электрическую энергию и обратно с пользой для себя.

Однако звуки, которые непрерывно окружают нас, независимо от того, созданы ли они людьми, другими формами жизни или неодушевленными предметами, просто исчезают и преобразуются в теплоту.

Если бы звук оставался неконвертированным в другие формы энергии, мы смогли бы легко увидеть, как громкость звука уменьшается по мере удаления от его источника. Звуковые волны распространяются по направлению наружу в виде расширяющейся сферы, исходящей из источника звука, и полная мощность каждой представленной звуковой волны распространяется по этой поверхности. Поверхность сферы равна 4πr2, где r — радиус сферы, то есть расстояние до источника. Если расстояние от центра увеличить в три раза, то площадь поверхности увеличивается в девять раз и, таким образом, через квадратный сантиметр поверхности проходит только девятая часть мощности. Интенсивность звука, как ожидалось бы, изменится обратно пропорционально квадрату расстояния от источника. Таким же образом, например, уменьшается интенсивность гравитационного притяжения. Однако тяжесть не поглощается материей, а звук может быть легко поглощен большинством объектов, с которыми он вступает в контакт, даже непосредственно воздухом. В результате звук уменьшается гораздо быстрее, чем можно было бы ожидать.

Каждый объект имеет некоторый собственный период колебаний, и, по крайней мере, в случае простых гармонических колебаний этот период пропорционален к квадратному корню из массы объекта, деленного на силу упругости (см. уравнение 8.4). В случае маятника, где силой упругости является сила тяжести (которая увеличивается вместе с массой тела), период колебаний изменяется, как квадратный корень из длины маятника, разделенной на ускорение свободного падения (см. уравнение 8.9).

Это означает, что если мы рассматриваем два однотипных объекта, то ожидаем, что больший и более массивный из них будет иметь и более длинный период колебаний. Следовательно, он произведет меньшее количество звуковых волн в единицу времени, и индивидуальные волны будут иметь большую длину волны и более низкую частоту.

Период колебаний также может быть изменен, если мы изменим величину силы упругости: по мере увеличения силы упругости период колебаний становится короче. То, что тугую струну более трудно вывести из положения равновесия, чем слабо натянутую, иллюстрирует то, что сила, имеющая тенденцию восстанавливать струну к «нулевому» положению, увеличивается по мере возрастания натяжения струны. Из двух одинаковых струн более тугая струна сокращается также быстрее, и если это — тетива лука, то позволяет лучнику выстрелить дальше. (Именно поэтому тетиву лука содержат натянутой настолько туго, насколько это возможно, когда лук находится в действии.) Тугая струна, более быстро «отскакивая» назад, естественно, имеет и более короткий период колебаний, чем слабо натянутая, она и звуковые волны производит с более высокой частотой и более короткой длиной волны.

Назад Дальше