Мы знаем, что расстояние от Луны до центра Земли равно 382 400 километрам. Это в 60,3 раза больше расстояния от центра орбитального спутника, находящегося сразу за пределами атмосферы. Поэтому на Луне первая космическая скорость меньше, чем такая же на Земле, коэффициент пересчета равен √60,3. Другими словами, первая лунная космическая скорость равна 7,9/√60,3, или примерно 1 км/с.
Теперь рассмотрим спутник, находящийся на орбите в 42 000 километров от центра Земли (приблизительно 35 600 километров над ее поверхностью). Его расстояние от центра Земли в 6,6 раза больше, чем у объекта на поверхности Земли. Его первая космическая скорость поэтому равна 7,9/√6,6, или почти 3,1 км/с. Длина его орбиты приблизительно равна 264 000 километрам, и при достижении первой космической скорости спутнику потребуется как раз 24 часа для того, чтобы совершить одно обращение вокруг планеты. Поэтому при таких условиях спутник будет двигаться со скоростью вращения Земли, а нам будет казаться, что он неподвижно висит на небе. Такие внешне неподвижные спутники прекрасно служат в качестве спутников связи.
Давайте снова рассмотрим падающее тело. Объект, удерживаемый в некоторой точке над землей, находится в состоянии покоя. Если мы отпустим его, то он сразу начнет падать. Очевидно, что мы создали движение там, где его изначально не существовало. Но «создали» — слово, которое физики переваривают с трудом (для этого существуют философы). Разве что-нибудь действительно может быть создано из ничего? Или одна вещь просто превращается в другую, так что вторая появляется только за счет перехода первой в состояние небытия? Или, возможно, один объект подвергается изменениям (например, переходит из состояния покоя в стадию движения, например) потому и только потому, что другой объект подвергается противодействующим изменениям (например, из состояния покоя — в стадию движения, но в противоположном направлении). В этом последнем случае то, что создано, не является движением, а является движением плюс «антидвижение», и если сложить их вместе, то мы получим нуль, а следовательно, возможно, что никакого движения не было создано вообще.
Чтобы разрешить эти вопросы, давайте сначала попробуем точно решить, что же мы подразумеваем под понятием «движение».
Мы можем начать с того, скажем, что сила, конечно, создает движение. Приложенная к любому телу, первоначально находившемуся в состоянии покоя, например к хоккейной шайбе на льду, сила порождает ускорение и заставляет шайбу перемещаться все быстрее и быстрее! Чем дольше действует сила, тем быстрее двигается хоккейная шайба. Если сила постоянна, то скорость в любой данный момент времени пропорциональна величине силы, умноженной на время, в течение которого она действует. К этому произведению силы (f) на время (t) применяют термин «импульс» (I):
Так как сила производит движение, мы могли бы ожидать, что данный импульс (то есть данная сила, действующая в течение данного времени) будет всегда производить одно и то же количество движения. Однако если это так, то количество движения не может зависеть только от одной скорости. Если та же самая сила будет действовать на вторую хоккейную шайбу, массой в десять раз больше первой, она создаст меньшее ускорение и за данное время создаст меньшую скорость, чем в первом случае. Поэтому количество движения, произведенного импульсом, должно также учитывать не только скорость, но и массу.
Это и есть то, что фактически подразумевается уравнением 6.1. В соответствии со вторым законом Ньютона мы знаем, что сила равна массе, умноженной на ускорение (f = ma). Мы поэтому можем заменить ma на f в уравнении 6.1 и написать:
Но из уравнения 2.1 мы знаем, что для любого тела, начинающего движение из состояния покоя, скорость (v), произведенная силой, равна ускорению a, умноженному на время (t), то есть at = v. Если мы заменим v на at в уравнении 6.2, то получим:
Именно эта величина, mv — масса, умноженная на время, и является действительной мерой движения тела. Тело, перемещающееся быстро, требует и большего усилия для своей остановки, чем то же самое тело, перемещающееся медленно. Увеличение в скорости поэтому увеличивает количество его движения. С другой стороны, массивное тело, перемещающееся с некоторой скоростью, требует и большего усилия для своей остановки, чем это требует легкое тело, перемещающееся с той же самой скоростью. Увеличение в массе также увеличивает количество его движения. Следовательно, произведение mv призвано, чтобы назваться «количеством движения» (momentum) (от латинского слова, означающего «движение»).
Физический смысл уравнения 6.3 заключается в том, что импульс (ft), приложенный к телу, находящемуся в состоянии покоя, заставляет это тело получить количество движения (mv), равное импульсу. В более общем виде: если тело уже находится в движении, то приложение импульса вызовет изменение количества движения, равное импульсу. Говоря более коротко, импульс (силы) равен изменению количества движения.
Единицами измерения импульса должны быть, с одной стороны, единицы измерения силы, умноженной на время, согласно уравнению 6.1, или массы, умноженной на скорость, согласно уравнению 6.3. В системе МКС единицы измерения силы — ньютоны, так что импульс может быть измерен в ньютон-с. С другой стороны, единицы измерения массы — килограммы, а единицы измерения скорости — метры в секунду, так что единицы измерения импульса (масса, умноженная на скорость) равны кг-м/с. Однако ньютоны были определены как кг-м/с2. Таким образом, ньютон-с равны кг-м-с/с2, или кг-м/с. То есть единицы измерения I через ft получились теми же самыми, что и единицы измерения I, полученные через mv. В системе СГС, как легко можно показать, единицы измерения импульса — дины∙с или г∙см/с, и они также совпадают с обеих сторон.
Представьте себе хоккейную шайбу массой m, двигающуюся по льду со скоростью v. Ее количество движения равно mv. Теперь представьте себе другую хоккейную шайбу той же самой массы, перемещающуюся с той же самой скоростью, но в противоположном направлении. Ее скорость поэтому –v. и ее количество движения равно –mv. Количество движения, как вы видите, является векторной величиной, так как оно зависит от скорости и имеет не только количественную характеристику, величину, но и направление. Естественно, что, если мы имеем два тела с импульсами в противоположных направлениях, мы можем сказать, что одно количество движения равняется некоторому положительному значению, а другое — некоторому отрицательному значению.
Предположим теперь, две хоккейные шайбы покрыты по кругу слоем клея, достаточно сильного, чтобы заставить их немедленно сцепиться вместе при вступлении в контакт друг с другом. И предположим, что они вступают в контакт «лоб в лоб». Если это произойдет, они мгновенно остановятся.
Будет ли уничтожено количество их движения? Нисколько. Полное количество движения системы было равно mv + (-mv), или 0, перед столкновением, и 0 + o, или (все еще) 0, после столкновения. Распределение количества движения среди частей системы до столкновения было иным, чем после столкновения, но полное количество движения осталось неизменным.
Предположим теперь, что вместо того, чтобы прилипнуть, когда эти две шайбы столкнулись (неупругое столкновение), они отпрыгнули бы друг от друга с абсолютной упругостью (упругое столкновение). Если бы это произошло, то каждая из шайб полностью изменила направление своего движения. Та, чье количество движения было равно (mv), теперь имела бы количество движения, равное (−mv), и наоборот. Вместо суммы mv + (–mv) мы получили бы сумму (–mv) + mv. Снова произошло бы изменение в распределении количества движения, но снова — полное количество движения системы будет неизменно.
Если столкновение не было ни совершенно упругим, ни полностью неупругим, если шайбы отпрыгнули обособленно, но только слабо, то значение количества движения для каждой из шайб могло бы изменяться от mv до –0,2mv, в то время как количество движения другой шайбы могло измениться от –mv до 0,2mv. В любом случае конечная сумма была бы равна нулю.
Все это справедливо и в том случае, если шайбы встречаются «под углом», а не «лоб в лоб» и касаются друг друга «по скользящей». Если они встречаются «под углом», то есть таким образом, что их скорости не направлены в точно противоположных направлениях, оба импульса этих тел не обнулятся, даже если скорости этих двух шайб были равны. Полное количество движения системы можно вычислить векторным сложением этих двух индивидуальных импульсов. И шайбы тогда отпрыгнут таким образом, каким укажет вектор их суммы. Это же сложение укажет нам на тот факт, что суммарное общее количество движения системы осталось таким же, как до столкновения. Все это также справедливо для частного случая, когда двигающаяся шайба ударяет скользящим ударом в шайбу, находящуюся в состоянии покоя. Шайба, находящаяся в состоянии покоя, будет приведена в движение, а шайба, которая изначально перемещалась, изменит направление своего движения; однако оба получившихся в результате столкновения импульса в итоге составят величину, равную оригинальной.
Рассматриваемые величины останутся, по существу, неизменными, даже если эти две шайбы имели различные массы. Предположим, что одна шайба перемещалась с некоторой данной скоростью направо и имела количество движения, равное mv, в то время как другая, имеющая массу в три раза больше первой, перемещалась с той же самой скоростью налево и имела поэтому импульс, равный –3/mv. Если рассмотреть эти две, связанные вместе после столкновения «лоб в лоб», объединенные шайбы (с полной массой 4 т), то мы увидим, что они продолжили бы перемещаться влево, в направлении, в котором двигалась более массивная шайба, но суммарная скорость системы была бы равна половине начальной скорости оригинала (— v/2). Первоначальное количество движения системы было: mv + (–3mv), или –2mv. Окончательное количество движения системы будет: (4m) x (–v/2), или –2mv. Опять мы видим, что полное количество движения системы осталось неизменным.
А что получается в том случае, если количество движения, как кажется, создано «из ничего»? Давайте рассмотрим пулю, которая первоначально находится в состоянии покоя (поэтому ее количество движения равно нулю), которую внезапно выстреливают из ружья, а значит — она начинает перемещаться с высокой скоростью. Как мы знаем, пуля теперь имеет значительное количество движения, равное (mv). Однако пуля — это только часть системы. Оставшаяся часть системы — ружье — тоже должно получить импульс, равный –mv, так как оно перемещается в противоположном направлении. Если ружье обладает массой в n раз большей, чем масса пули, оно должно переместиться в противоположном направлении со скоростью, равной 1/n скорости ускоряющейся пули. Количество движения ружья (минус пуля) будет тогда: (nm)∙(–v/n), или –mv. (Если в момент выстрела ружье не было закреплено, то этот «обратный» рывок его — хорошо виден. Если же мы стреляем из ружья обыкновенным образом, то чувствуем его обратное движение в виде «отдачи».) Полное количество движения, равное импульсу пули плюс импульс ружья, как было равно нулю до выстрела, так и осталось равно нулю после выстрела, хотя в данном случае распределение количества движения среди частей системы весьма различается до и после выстрела.
Короче говоря, все эксперименты, которые мы можем провести, приводят нас к заключению, что: «Полное количество движения изолированной системы тел остается постоянным». Это выражение называется законом сохранения импульса.
Конечно, чтобы доказать обобщение, нужно не просто перечислять отдельные случаи, подтверждающие его истинность. Независимо от того, насколько часто вы экспериментируете и приходите к выводу, что количество движения сохранено, вы не можете заявить с уверенностью, что так будет всегда. В лучшем случае можно заявить, что поскольку эксперимент за экспериментом подтверждают истинность закона и поскольку в результате экспериментов не было получено данных, опровергающих этот закон, то существует большая вероятность того, что данный закон верен. Было бы гораздо лучше, если бы мы могли доказать обобщение, опираясь на другое обобщение, истинность которого уже была доказана ранее.
Например, предположите, что дна тела любой массы, перемещающиеся с любыми скоростями, сталкиваются под любым углом, с любой степенью упругости. В момент столкновения одно тело прикладывает силу (f) ко второму. В соответствии с третьим законом Ньютона второе тело прикладывает к первому телу равную и противоположную по знаку силу (–f). Сила прикладывается в течение времени, пока эти два тела остаются в контакте. Время (t) контакта, очевидно, одинаково для обоих тел, поскольку, когда первое тело перестает быть в контакте со вторым, второе также перестает быть в контакте с первым. Это означает, что импульс первого тела на втором равен ft, а второго на первом равен –ft.
Импульс первого тела на втором передает изменение количества движения, равное mv, второму телу. Но импульс второго тела на первом, являющийся абсолютно равным по величине, но противоположным по знаку, должен передать изменение в количестве движения, равном –mv, первому. Изменения в количестве движения могут быть большие или маленькие в зависимости от размера импульса, угла столкновения и эластичности материала; однако независимо от величины изменения количества движения первого тела изменение количества движения второго тела равно по величине и противоположно по направлению. Полное количество движения системы должно оставаться тем же самым.
Таким образом, закон сохранения импульса может быть получен из ньютоновского третьего закона движения. На самом деле, однако, этого не произошло, и закон сохранения импульса был открыт в 1671 году английским математиком Джоном Валлисом (1616–1703) на дюжину лет раньше, чем Ньютон опубликовал свои законы движения. Обратный путь, кстати, тоже возможен, и третий закон движения тоже можно получить из закона сохранения импульса.
Туг у вас может появиться ощущение, что что-то не так, ведь если физики доказывают закон сохранения количества движения, опираясь на третий закон движения, а затем доказывают третий закон движения, исходя из закона сохранения количества движения, то они фактически ходят по кругу и не доказывают ничего вообще. Это бы и было, если бы происходило так, но все происходит иначе.
Здесь не столько вопрос «доказательства», сколько вопрос создания предположения и демонстрации последствий этого предположения. Можно начинать с того, что принять третий закон движения, а затем показать» что закон сохранения импульса есть следствие его действия. Точно так же можно начать с того, что принять закон сохранения импульса и показать, что третий закон — следствие из него.
Направление доказательства, которое вы выберете, — просто вопрос удобства. В любом случае не существует никакого магического «доказательства», также нет и никакой обычной «ясности». Целая структура опирается на тот факт, что никто в течение почти трех столетий не был в состоянии провести четкую демонстрацию опыта, который показал бы, что существует или может быть искусственно создана система, в которой не действует третий закон движения или закон сохранения импульса. Такая демонстрация может быть проведена завтра, и тогда, как последствие этой демонстрации, придется, вероятно, изменить многие основы физики; но к настоящему моменту времени вероятность того, что это случится, кажется весьма и весьма небольшой.
И все же, может быть, мы немного пофантазируем и попытаемся придумать случаи, когда этот закон не соответствует действительности? Например, предположим, что бильярдный шар бьет в борт бильярдного стола и отскакивает по своей собственной линии удара. Его скорость была v, стала после отскока — у, и так как его масса не изменилась, то первоначальная величина mv количества движения стала равна — mv. Разве это не явное изменение количества движения?
Да, это так. Но бильярдный шар не представляет собой систему целиком. Полная система включает в себя борт бильярдного стола, который приложил импульс, изменивший количество движения бильярдного шара. В действительности, так как бильярдный стол удержан на основании (земле) при помощи сил трения, преодолеть которые шар не может из-за их слишком большой величины, то система включает в себя также и всю планету. Количество движения Земли изменяется ровно настолько, чтобы компенсировать изменение в количестве движения бильярдного шара. Однако масса Земли значительно больше, чем у бильярдного шара, и изменение в ее скорости поэтому также соответственно меньше — слишком ничтожно малое, чтобы быть обнаруженным любыми известными человеку средствами.
Все же можно было бы предположить, что, если достаточное количество бильярдных шаров, двигающихся в одном и том же направлении, будут ударять в достаточное количество бильярдных столов в течение достаточно долгого времени, движение Земли могло бы быть ощутимо изменено. Как бы не так! Каждый ударяющийся бильярдный шар должен ударить противоположный край стола, или вашу руку, или какое-то другое препятствие. Но если даже он просто медленно остановится благодаря трению (которое можно рассматривать как серию микроударов шара о ткань стола), это ничего не изменит. Независимо от того, каким образом двигается бильярдный шар, он распределит изменения в своем количестве движения одинаково в обоих направлениях, прежде чем остановится, если только непосредственно вовлечены шар и Земля.
В наиболее общем случае распределение количества движения между Землей и всеми подвижными объектами на ее поверхности или около может время от времени изменяться, но полное количество движения и поэтому общая скорость Земли плюс всех этих подвижных объектов (предполагая, что общая масса остается неизменной) должны оставаться теми же самыми. Никакая величина или вид взаимодействия среди компонентов системы не могут изменить полное количество движения этой системы.
А теперь решение проблемы падающего тела, которой я открыл данную главу. В то время как тело падает, оно получает некоторое количество движения (mv), это количество движения нарастает по мере увеличения скорости. Система, однако, состоит не только из одного падающего тела. Сила тяготения, которая вызывает движение, относится и к телу, и к Земле. Следовательно, Земля должна получить количество движения, равное (–mv), двигаясь навстречу телу. Из-за огромной массы Земли это ее встречное ускорение исчезающе мало и при любых практических вычислениях может игнорироваться. Однако принцип остается. Когда тело падает, движение не создается из ничего. Скорее возникает и движение тела, и антидвижение Земли, и эти два движения взаимоисключаются. Полное количество движения Земли и падающего тела относительно друг друга является нулевым до того, как тело начинает падать, нулевым — после того, как оно заканчивает падение, и нулевым — в любой произвольно взятый момент времени в течение его падения.
До сих пор я рассматривал движение, как если бы оно вовлекало перемещение объекта через пространство в едином целом с различными частями объекта, поддерживающими их взаимную неизменяемую ориентацию. Такое движение называется «поступательным» (translationat) — от латинских слов, означающих «переносить».
Однако возможно и перемещение тела, при котором оно не будет двигаться через пространство как единое целое, но при этом — все же будет перемещаться. Например, центр колеса может быть закреплен на одном месте, чтобы колесо в целом не изменяло своего положения; однако само колесо может вращаться относительно этого центра. Подобным же образом сфера, установленная в пределах некоторого объема пространства, может вращаться вокруг некоторой установленной линии, оси. Этот вид движения называется «вращательным» (rotational) — от латинского слова, означающего «колесо». (Конечно, тело может двигаться и в комбинации из этих двух типов движения, как это делает бейсбольный мяч, который крутится, одновременно перемещаясь вперед, или как Земля, которая вращается вокруг своей оси, одновременно перемещаясь вперед по своей орбите вокруг Солнца.)
Вращательное движение весьма аналогично поступательному, но рассмотрение его требует изменения точки зрения. Например, мы привыкли думать о скорости поступательного движения в терминах «миля в час» или «сантиметры в секунду», во вращательном движении единицы измерения другие. Кроме того, мы принимаем как очевидное, что если одна часть тела имеет некоторую скорость поступательного движения, то и все остальные части тела имеют такую же скорость. Другими словами — весь самолет перемещается вперед со скоростью своего носа.
В случае вращательного движения эти вопросы различны. Точка на ободе вращающегося колеса перемещается уже с некоторой скоростью, точка, находящаяся ближе к центру колеса, перемещается с меньшей скоростью, а точка, находящаяся еще ближе к центру, перемещается с еще меньшей скоростью. Точка, находящаяся в центре вращающегося колеса, неподвижна. Поэтому сказать, что колесо вращается со скоростью столько-то сантиметров в секунду, является бессмысленным, если мы не указываем точную часть колеса, к которой относится данное высказывание, а это может быть достаточно неудобно.
Было бы более удобно, если бы мы могли найти некоторый метод измерения скорости вращения, который был бы применим сразу ко всему телу вращения. Одним из таких методов может быть рассмотрение числа оборотов тела за единицу времени. Хотя различные точки на колесе могут двигаться с различной скоростью, каждая точка на колесе заканчивает вращение в один и тот же момент времени, так как колесо вращается «как единое целое». Поэтому мы можем говорить о колесе (или любом другом объекте вращения), что оно «имеет скорость в столько-то вращений в минуту» (обычно это выражение сокращают как «об/мин», или «rpm» — от английского «revolutions per minute».
Или мы могли бы разделить одно обращение колеса на 360 равных частей, называемых «градусами» (сокращенно градус обозначается значком °. В этом случае 1 оборот в минуту был бы равен 360 град./мин, или 6 град./с (градусов в секунду). В то время как колесо поворачивается на какой-то градус линия, соединяющая центр колеса с точкой на его ободе, образует угол. Поэтому о скорости, данной в оборотах в минуту или в градусах в секунду, обычно говорят как об «угловой скорости».
Вращательное движение способно совершаться любым из двух зеркально отраженных способов. Если смотреть из некоторого фиксированного положения, то колесо может выглядеть вращающимся «по часовой стрелке», то есть в том же направлении, в котором двигаются стрелки часов. Но с другой стороны, оно может двигаться «против часовой стрелки», то есть в сторону, противоположную движению стрелок часов. Поэтому об угловой скорости можно говорить, учитывая не только величину, но также и направление. (Что касается скоростей, включаемых в поступательное движение, то о них можно говорить как о «линейных скоростях», так как движение тут происходит скорее по линии, чем по углу.)
Физики используют другую единицу измерения вращательной скорости — радиан. Это угол, который отображает на окружности дугу, равную по длине радиусу круга. Длина окружности равна π, умноженному на диаметр окружности, то есть 2π умножить на радиус круга. Поэтому длина окружности равна 2πr, умноженным на длину дуги, обозначенной одним радианом. Один полный оборот заключает в себя прохождение одной полной длины окружности, то есть один оборот равняется 2π радианам, или 360°. Из этого следует, что один радиан равняется 360°/2π, или, так как к равняется 3,14159, один радиан примерно равен 57,3° (1 рад = 57,3°).
Угловая скорость часто обозначается греческой буквой ω («омега»), так как это — греческий эквивалент латинской буквы v, обычно используемой для обозначения линейной скорости.
Для любой данной точки на вращающемся теле угловая скорость может быть приведена к линейной скорости. Линейная скорость зависит не только от угловой скорости, но также и от расстояния, на котором находится рассматриваемая точка от центра вращения (r). Если для той же самой угловой скорости удвоить расстояние от точки до центра вращения, то линейная скорость точки также удвоится. В таком случае можно сказать, что:
Это уравнение абсолютно корректно, когда ω измеряется в радианах в единицу времени. Например, если угловая скорость — один радиан в секунду, то за одну секунду данная точка, расположенная на окружности колеса, проходит дугу, равную ее расстоянию от центра, и v = r. Εсли ω равняется 2 радианам в секунду, то v = 2r и так далее.
Если бы мы измеряли ω в оборотах в единицу времени, то уравнение 6.4 можно было бы прочитать как (v = 2πrω), а если бы мы измеряли ее в градусах в единицу времени, то это же уравнение можно было бы прочитать как v = rω/57,3. Это — пример того, как единица измерения, которая на первый взгляд может показаться имеющей странную и неудобную размерность, оказывается весьма полезной, потому что она позволяет выразить отношения между величинами с максимальной простотой.