Для того чтобы привести тело, находящееся в состоянии покоя, в поступательное движение, требуется приложить к нему силу. Но при некоторых условиях сила может вместо этого вызвать вращательное движение тела. Предположим, например, вы прибили гвоздем один конец доски к деревянному основанию. Если вы теперь толкнете доску, то она не будет двигаться в поступательной манере движения, так как один конец ее закреплен. Вместо этого доска начнет совершать вращательное движение вокруг зафиксированного конца.
Сила, которая вызывает такое вращательное движение, называется крутящим моментом («torque» — от латинского слова, означающего «вращать»). Если мы продолжим использовать греческие буквы для обозначения элементов вращательного движения, мы можем обозначить крутящий момент греческой буквой τ («tau» — «тау»), которая является эквивалентом латинской буквы «t» (от латинского «torque» — очевидно).
Данная сила не всегда вызывает тот же самый крутящий момент. В случае упомянутой доски величина крутящего момента зависит от расстояния между точкой, к которой приложена сила, и фиксированной точкой. Сила, приложенная непосредственно к фиксированной точке, не будет вызывать крутящий момент. По мере отступа от этой точки данная сила произведет все более быстрое вращение и поэтому вызовет все больший и больший крутящий момент. Фактически крутящий момент равен силе (f), умноженной на расстояние (r):
В прошлом о крутящем моменте говорили как о «моменте силы», но эта фраза теперь вышла из употребления. Крутящий момент может быть вызван не только в случае, когда какая-то часть тела зафиксирована в пространстве, но даже тогда, когда все тело способно свободно перемещаться.
Рассмотрим тело, обладающее массой, но состоящее из одной-единственной точки. Такое тело может подвергнуться только поступательному движению. Вращающееся тело, в конце концов, крутится относительно некоторой точки (или линии); если эта точка — все, что существует, и нет ничего еще, что могло бы вращаться, возможно только линейное движение. Зато к таким точечным массам наиболее просто применить законы движения.
Однако в реальной Вселенной не существует никаких точечных масс. Все реальные тела, обладающие массой, могут расширяться. Однако можно показать, что в некоторых случаях такие реальные тела ведут себя так, как будто вся их масса сконцентрирована в какой-то одной точке. Точка, в которой эта кажущаяся концентрация может быть найдена, называется «центром масс» тела. Если тело симметрично по форме и однородно по плотности или имеет плотность, которая изменяется симметричным образом, центр массы совпадает с геометрическим центром тела. Например, Земля, по существу, сферическое тело, но в то же время оно неравномерно плотно, плотность Земли — наибольшая в центре, и эта плотность уменьшается одинаково во всех направлениях, по мере приближения к поверхности. Центр масс Земли поэтому совпадает с ее геометрическим центром, и именно к этому центру и направлена сила тяжести.
Концепция центра масс может объяснять несколько вещей, которые иначе могли быть достаточно озадачивающими. Согласно ньютоновскому первому закону движения, объект, находящийся в движении, продолжает перемещаться с постоянной скоростью, если на него не воздействовать некоторой внешней силой. Предположим, что снаряд, содержащий взрывчатое вещество, перемещается через пространство с постоянной скоростью и что в некоторой точке он взрывается. Фрагменты снаряда разлетаются во всех направлениях, и различные химические продукты взрыва также расширяются по различным направлениям вовне. Этот взрыв является внутренней силой, однако, будучи одним из фрагментов в пределах рассматриваемой системы, согласно первому закону он не должен оказывать никакого эффекта на движение системы. Все же различные фрагменты снаряда больше не перемещаются с первоначальной скоростью. Что же — сломались ньютоновские законы движения?
Нисколько. Законы описывают систему в целом и совсем не обязательно должны подходить к той или иной ее части, рассмотренной в изоляции от других. В результате взрыва система изменила свою форму. Но изменил ли взрыв центр масс системы? Центр масс мог бы рассматриваться как «средняя точка» тела. Если одна часть снаряда брошена наружу, то это сбалансировано другой частью, брошенной в противоположном направлении. Чтобы быть более точным, согласно закону сохранения импульса векторная сумма всех импульсов в одном направлении должна быть равна векторной сумме всех импульсов в противоположном направлении. Можно показать, что независимо от того, как изменилась форма тела под действием внутренних силы, центр масс остается там, где он и находился до того, как произошло изменение формы. Другими словами, центр масс системы перемещается с постоянной скоростью независимо от взрыва, который расшвырял частицы системы туда и сюда.
Если бы тело под влиянием силы тяготения двигалось по параболической дуге, его внезапный взрыв не заставил бы центр масс прекратить плавное движение по этой параболической дуге, несмотря на то что отдельные фрагменты разлетелись бы во все стороны. (Сказанное подразумевает отсутствие вмешательства сил извне системы. Если фрагменты ударяются в другие тела и (при)останавливаются, движение центра масс изменяется. Опять же эффект, который оказывает сопротивление воздуха на множество частиц после взрыва, не может быть тем же, что оказывает действие на цельный снаряд перед взрывом; это тоже может изменять движение центра масс.)
Предположим теперь, что тело падает к земле. Каждую частицу тела тянет сила тяжести, но тело ведет себя так, как будто вся сила сконцентрирована в одной точке в пределах тела; такая точка называется «центром тяжести» тела. Если рассматриваемое тело находится в однородном поле тяготения, центр тяжести совпадает с центром масс тела. Однако более низкая часть тела находится несколько ближе к центру земли, чем верхняя, поэтому более низкая часть испытывает на себе большее гравитационное влияние. Следовательно, центр тяжести тела находится чуть-чуть ниже центра масс; при нормальных условиях эта разница настолько незначительная, что ей можно пренебречь, но не следует смешивать или подменять друг другом эти понятия.
Концепция центра тяжести весьма полезна при рассмотрении устойчивости тел. Представьте себе кирпич, опирающийся на свою узкую сторону. Если его слегка качнуть, а затем отпустить, он вернется назад, к своему первоначальному положению. Если качнуть его несколько больше и снова отпустить, он снова вернется назад. По мере увеличения наклона, однако, наступает такое положение, когда он падает на другую свою сторону. Что это за положение, при котором происходит этот «переворот»?
Мы можем рассматривать силу тяжести как силу, воздействующую на центр тяжести кирпича и только на эту точку. Пока центр тяжести расположен непосредственно по некоторой части первоначального основания, после удаления качающей силы эффект гравитационного напряжения перемещает кирпич назад на это основание. Если кирпич качнуть так сильно, что центр тяжести сместится на некоторую точку вне первоначального основания, кирпич упадет на то основание, на котором теперь расположена эта точка.
Естественно, чем более широким является основание по сравнению с высотой центра тяжести, тем на больший градус требуется качнуть кирпич, прежде чем центр его тяжести переместится, другими словами: чем шире основание, тем устойчивей тело. Кирпич, лежащий на своей самой широкой стороне, более устойчив, чем такой же, но стоящий на своей узкой стороне.
Конус, опирающийся на свой острый конец, может быть выставлен таким образом, что его центр тяжести будет непосредственно выше этой точки. Тогда он останется в состоянии равновесия. Однако самое небольшое движение или слабое дуновение воздуха способно переместить его центр тяжести за эту точку в одном или другом направлении, и конус упадет вниз. Жонглер переносит объекты, сбалансированные на точках, или, говоря более точно, на очень маленьких основаниях, перемещая собственное тело таким образом, чтобы подводить основание под центр тяжести каждый раз, когда центр тяжести пытается сместиться из этого положения.
Если тело неоднородно по плотности, то его центр тяжести не расположен в его геометрическом центре, а смещен к более плотным частям. Объект, который является особенно плотным в своей самой нижней части («с тяжелым основанием»), имеет необычно низкий центр тяжести. Даже большой градус наклона не будет выносить этот низкий центр тяжести за границу основания, и, когда мы отпустим его, объект возвратится в свое первоначальное положение. С другой стороны, объект, который является особенно плотным в своей верхней части («с тяжелой вершиной»), имеет необычно высокий центр тяжести и упадет даже после небольшого качания. Так как обычно мы имеем дело с объектами примерно однородной плотности, мы удивляемся отказу объекта с тяжелым основанием падать (например, детская игрушка ванька-встанька, которая поднимается, даже если мы положим ее на бок), или легкости, с которой объект с тяжелой вершиной переворачивается.
Позвольте нам теперь вернуться к нашей точечной массе, которая подвержена только поступательному движению. Если мы представим себе силу, приложенную к реальному телу таким образом, чтобы пересечь его центр масс, то это реальное тело ведет себя так, как будто оно — точечная масса и подвергается чисто поступательному движению. Таким образом, у свободно падающего тела сила тяжести приложена непосредственно к центру тяжести (обычно совпадающему с центром масс), поэтому (без учета действия возможного крутящего момента, возникающего в момент, когда тело отпускают, а также ветра и сопротивления воздуха) тело будет падать чисто поступательно.
Если, однако, сила приложена к телу таким способом, что направлена по одной или другой стороне от центра масс, происходит возникновение крутящего момента. Такие тела, даже когда сила приводит их в поступательное движение, одновременно подвергаются и вращательному движению. Манера, в которой двигается футбольный мяч, бейсбольный мяч и любой другой подобный объект, известна всем. В природе настолько трудно сосредоточить силу на центре масс, что фактически невозможно предохранить тело от вращения.
Естественно, чем дальше точка приложения силы находится от центра масс, тем больше в движении тела доля вращательного движения по сравнению с поступательным. Мы можем легко заставить крутиться стоящую на ребре монетку, взяв ее за ребра пальцами, при этом скорость ее вращения — велика, а скорость перемещения — очень небольшая.
Есть теория, согласно которой звезды и планеты были порождены увеличением в результате соударений растущих ядер тел и маленьких фрагментов. В результате труда астрономов возникли схемы, из которых видно, что эти сталкивающиеся тела кажутся имеющими тенденцию более частого соударения со сторонами вне центра масс, что приводит к образованию крутящих моментов, сумма которых не равна нулю. Таким образом, образуется комбинированное движение небесных тел — они двигаются прямолинейно, одновременно вращаясь вокруг некоторой оси.
Наряду с известной нам поступательной инерцией имеется и вращательная инерция. Если колесо вращается на абсолютно гладкой оси, то оно будет продолжать вращаться с постоянной угловой скоростью до тех пор, пока к нему не будет приложен внешний крутящий момент.
В угловом движении приложение крутящего момента стимулирует ускорение. Это угловое ускорение обозначают буквой α (греческая буква «альфа», которая является эквивалентом латинской буквы «a»). Единицы измерения углового ускорения — радианы в секунду за секунду, или рад/с2. Так же как линейная скорость равна угловой скорости, умноженной на расстояние от центра вращения (см. уравнение 6.4), так и, следуя той же самой логике рассуждения, линейное ускорение a равно угловому ускорению α, умноженному на расстояние от центра r, или:
В соответствии со вторым законом движения мы знаем, что сила равна массе, умноженной на линейное ускорение (f = та). Подставив это выражение в уравнение 6.6, мы можем заменить (rα) на а и получаем:
Мы уже решили, что крутящий момент (τ) равен силе, умноженной на расстояние от центра (fr). Это было выражено в уравнении 6.5. Подставляя значение для f, полученное в 6.7, мы имеем:
Теперь, согласно законам движения в применении к прямолинейному движению, отношение силы к ускорению (f/a) равно массе (m) (см. уравнение 3.3). Что, если мы возьмем аналогичное отношение в угловом движении — то есть отношение крутящего момента к угловому ускорению (τ/α)? Перестраивая уравнение 6.8, мы можем получить значение для такого отношения:
Таким образом, во вращательном движении величина mr2 (масса, умноженная на квадрат расстояния от центра вращения) аналогична массе (m) в поступательном движении. Это наводит на мысли об интересных различиях между этими двумя типами движения.
Рассмотрим тело, перемещающееся по прямой линии, которое при этом составлено из тысячи единиц равной массы. Сила, требуемая, чтобы остановить движение этого тела в данном периоде времени, зависит только от полной массы. Она не зависит от того, как эти единицы распределены: упакованы они плотно или нет, находятся в полой сфере или в объеме кубической формы, скомпонованы по прямой или как-нибудь еще. Имеет значение только полная масса, а манера, в которой распределены ее составляющие, — не изменяет значения полной массы.
Во вращательном движении, однако, влияние оказывает не просто масса, а масса, умноженная на квадрат расстояния от точки (или линии), относительно которой имеет место вращение. Рассмотрим, например, сферу вращения, составленную из тысячи единиц равной массы. Некоторые из этих единиц находятся ближе к оси, а некоторые — дальше от оси. Те, что находятся ближе к оси, имеют маленький r, а поэтому маленький mr2, в то время как те, что дальше от оси, имеют большой r, а поэтому — большой mr2. Тело в целом имеет некоторый средний mr2, который и называется моментом инерции, часто обозначаемый символом I. Крутящий момент, который требуется, чтобы остановить сферу вращения в данный момент времени, зависит не от массы сферы, а от ее момента инерции.
Значение момента инерции зависит от распределения массы и может быть изменено без изменения полной массы. Если вместо твердой сферы мы возьмем полую сферу, составленную из тех же самых единиц массы, но некоторые из единиц, ранее располагавшиеся близко к оси, теперь будут расположены далеко от оси. А с другой стороны, мы возьмем такую, где никакие единицы не были бы перемещены ближе к оси. Среднее число r увеличилось бы, и момент инерции (среднее число mr2) также значительно увеличился, даже несмотря на то, что полная масса не изменилась. Для того чтобы остановить вращающуюся полую сферу в данный момент времени, потребовался бы намного больший крутящий момент, чем для того, чтобы остановить твердую сферу той же самой массы, вращающуюся с той же самой угловой скоростью.
Поэтому гироскопы и маховики, в которых требуется поддерживать стабильную угловую скорость, несмотря на крутящие моменты одного или другого типа, построены так, чтобы иметь обод настолько массивный, насколько это возможно, и внутреннюю часть — легкой, насколько это возможно. Тогда ускорения, произведенные данными крутящими моментами, сводятся к минимуму, потому что момент инерции был сведен к максимуму.
Неудивительно, что, рассматривая аналогии между вращательным и поступательным движением, мы видим экспериментальное подтверждение такой веши, как закон сохранения момента импульса. По аналогии с законом сохранения импульса в поступательном движении этот дополнительный закон может быть выражен в следующем виде: «Полное угловое количество движения изолированной системы тел остается постоянным».
Но как бы мы определили угловое количество движения? Обычное поступательное количество движения равно mv. массе, умноженной на скорость. Для углового количества движения мы должны заменить массу на момент инерции I, а скорость поступательного движения — на угловую скорость ω. Тогда угловое количество движения получается равным Iω.
И снова момент инерции (средняя величина mr3) может быть изменен без того, чтобы изменить полную массу, а это производит любопытные эффекты.
Предположим, например, что вы стоите на абсолютно гладком поворотном столе, который был приведен во вращение; вы держите ваши руки раздвинутыми на ширину плеч, в каждой руке у вас — тяжелый груз.
Ось вращения проходит через центр вашего тела от головы к пальцам ног, а масса ваших раскинутых рук находится дальше от этой оси, чем вся остальная часть тела. Грузы, которые вы держите в обеих руках, находятся еще дальше. Следовательно, ваши руки и грузы, которые они держат, оказывающие очень большое влияние на значение r, вносят большую составляющую в значение mr2 и создают момент инерции, намного больше того, которым вы обычно обладаете.
Предположим затем, что при вращении вы опускаете руки. Масса ваших рук и грузов, которые они держат, теперь значительно ближе к оси вращения, и, несмотря на то что полная масса не изменилась, момент инерции очень уменьшился. Если момент инерции (I) уменьшился, то угловая скорость со должна быть соответственно увеличена, чтобы угловое количество движения (Iω) оставалось постоянным. (Другими словами, если вам нужно, чтобы произведение двух чисел всегда равнялось 24, а затем изменяете множитель с 8 на 4, то вы должны изменить второй множитель с 3 на 6, чтобы произведение продолжало равняться 24: 24 = 8∙3; 24 = 6∙4; 24 = 4∙6; 24 = 3∙8; 24 = 2∙12…)
Так и получается. Поворотный стол внезапно увеличивает скорость своего вращения, в то время как вы опускаете руки, и также скорость вращения резко уменьшается, когда вы снова поднимаете руки. Фигурист использует этот же принцип при выступлениях на льду: сначала он вращается достаточно быстро с руками раздвинутыми в стороны, а затем руки опускает вниз или вытягивает вертикально вверх и осуществляет стремительное вращение на носке конька.
Тело, которое обладает только угловым количеством движения, не может передать неуравновешенное поступательное количество движения к другому телу, поскольку передавать ему нечего. Безусловно, вращающиеся колеса автомобиля дают поступательное количество движения. Но в этом случае, однако, равное по величине, но противоположное по знаку количество движения дает земля. Эти два поступательных импульса складываются, чтобы в результате дать нуль. Любой автомобилист, который когда-либо пробовал двигаться по льду, подтвердит этот факт. Как только трение уменьшилось до величины, когда оно очень малое или никакое количество движения не может быть передано земле, автомобиль получит малое или никакое количество движения, и колеса будут прокручиваться вхолостую.
Законы сохранения нравятся ученым. Во-первых, закон сохранения устанавливает пределы возможностей. При рассмотрении нового явления очень удобно исключить все объяснения, которые повлекли бы нарушение одного из законов сохранения (по крайней мере, пока не придут к выводу, что ничего, за исключением такого нарушения, не может объяснить явление). С оставшимися возможностями тогда гораздо легче работать.
В дополнение ко всему имеется интуитивное чувство, что ничто не возникает из ничего. Поэтому кажется надлежащим и правильным предположить, что Вселенная обладает определенным ограниченным количеством тех или других свойств материи (типа количества движения) и что в то время, как это количество распределено различными способами среди различных тел Вселенной, общая сумма их не может быть ни увеличена, ни уменьшена.
Следовательно, если мы наблюдаем ситуацию, в которой кажется, что в некотором отношении что-то получено из ничего, сразу имеет смысл начать поиск некоторого фактора ситуации, который уменьшается, компенсируя это увеличение. Может оказаться, что это — два фактора, объединенные некоторым способом, которые образуют константу. В случае углового количества движения, например, момент инерции может изменяться по желанию и может, по-видимому, появляться из ниоткуда или исчезать в никуда.
Угловая скорость, однако, всегда сразу изменяется в противоположную сторону, а произведение момента инерции и угловой скорости является константой.
Другой случай такого плана — результат рассмотрения «рычага». Рычаг — это любой твердый объект, способный к вращению вокруг некоторой фиксированной точки, называемой «точкой опоры» рычага. В качестве практического примера можно рассмотреть деревянную доску, лежащую на «козлах»; доска является рычагом, «козлы» — точкой опоры.
Если точка опоры находится точно под центром тяжести рычага, то рычаг останется сбалансированным, то есть не наклонится ни в ту ни в другую сторону. Поскольку рычаг, как и. любой другой объект, ведет себя так, как будто весь его вес сконцентрирован в центре тяжести, он может тогда удержаться целиком на узком крае точки опоры. Если рычаг обладает однородными геометрическими характеристиками и плотностью, центр тяжести его находится в геометрическом центре, и именно туда следует поместить точку опоры, как в известной детской игре — в качелях.
Если к любой точке на рычаге приложить направленную вниз силу, то эта сила, умноженная на расстояние до точки опоры, даст нам крутящий момент и рычаг начнет вращательное движение в направлении крутящего момента.