Знаменитый в свое время ученый-путешественник Александр Гумбольдт рассказывал, что крокодилы в жару лежат на песке и так разевают пасть, что их челюсти образуют одна относительно другой прямой угол. Очевидно, раскрытый рот помогает им охлаждаться и в то же время с пользой облучать слизистые оболочки.
Не любят жары и зноя жабы. На день они забираются в сырую землю под камни, в норы, и лишь с вечерней прохладой выходят на охоту.
Рептилии — черепахи, крокодилы, ящерицы, змеи — обычно не насиживают и не греют своих яиц. У них зародыши в яйцах развиваются за счет тепла окружающего воздуха и почвы. Вековой инстинкт подсказывает каждому из них, где лучше оставить яйца для инкубации. В селах Приокской поймы, например, на Рязанщине, замечали, что ужи иногда выбираются из своих оврагов, ползут к скотным дворам, ищут навоз и на нем откладывают яйца. Но у некоторых крупных питонов самки не бросают отложенных яиц, а остаются возле них, обвиваются вокруг кольцами и караулят их до тех пор, пока из яиц не вылезут змееныши. Как оказалось, дело тут не столько в инстинкте защиты будущего потомства от врагов, сколько в защите яиц и зародышей от холода. Когда тепло — питон лежит спокойно, неподвижно. При похолодании он начинает сокращать поперечные мускулы тела, благодаря чему согревается сам и своим теплом согревает яйца.
Плохо птицам и зверям в зной и жару, но еще хуже приходится им в холод и непогоду. Но и в борьбе с холодом они почти всегда выходят победителями: на помощь приходят опять-таки терморецепторы.
Каждый из нас замечал, что в сильный мороз очень быстро мерзнут пальцы, уши, нос, щеки, а ресницы и брови покрываются инеем. А вот глаза обычно не чувствуют холода. Это объясняется тем, что окончания чувствительных нервов, воспринимающих холод, распределены по нашему телу неравномерно. И хотя по телу рассеяны десятки тысяч холодовых рецепторов, холод мы ощущаем не всей кожей, а лишь теми ее участками, где больше всего находится холодовых терморецепторов.
Имеются такие рецепторы и у животных. Они, как верные стражи, воспринимают воздействие холода на организм и сигнализируют о нем в терморегуляторный центр. В результате организм отвечает рядом первичных защитных реакций, направленных на увеличение теплоизоляции. Наиболее обычные из них — сужение капилляров кожи и приподнимание волос шерсти и перьев при помощи специальных мышц, в результате чего увеличивается воздушная прослойка, изолирующая кожу от холода. Несколько позже появляется дрожь и увеличивается производство тепла, в чем существенную роль играет усиление гормональной деятельности надпочечников и щитовидной железы. При более длительном и сильном воздействии холода сохранению тепла способствуют также различные поведенческие реакции: изменение позы, сбивание животных в кучу, утепление гнезда, зарывание в снег или свертывание в клубок, отчего поверхность тела уменьшается.
В различное время года проявление таких защитных реакций различно и, кроме того, оно зависит от вида животных и образа их жизни.
Летнее похолодание для насекомоядных птиц неприятно и тем, что многие из них вынуждены голодать — насекомые в это время прячутся в укрытия, не летают. И самим есть нечего, и детям корма не хватает. Стрижи при похолодании улетают от своих гнезд за сотни километров— туда, где стоит теплая погода и есть в достатке пища. Птенцов они оставляют на произвол судьбы. Но те не погибают, так как гнезда их закрыты, и дождь не опасен. К тому же природа наградила их способностью сравнительно легко переносить неблагоприятные погодные условия. В это время птенцы стрижей впадают в состояние оцепенения и могут несколько дней прожить без пищи, так как все жизненные процессы у них замедляются. А крохотные тропические птички колибри впадают в такое оцепенение каждую ночь, благодаря чему легко переносят ночные похолодания: температура их тела в это время равна температуре окружающего воздуха.
Из птиц наиболее устойчивы к холодам жители Антарктики — пингвины Адели и крупные императорские пингвины. Но в особо холодные дни, при чрезмерно низкой температуре и сильных ветрах, они защищаются от холода, собираясь в большие компактные группы. Создается так называемая «черепаха», в которой большая часть тела птиц защищена от холода и ветра. Такие группы не распадаются очень долго, порой до 36 часов. Птенцы пингвинов под присмотром нескольких взрослых птиц-воспитателей собираются по двадцать и более малышей в группы — «детские сады». Таким способом они спасаются от холода, согревая друг друга. И вообще все птицы умеют греться, сушиться и оберегать своих детей от перегревания, охлаждения и дождя.
Лисицам, волкам, песцам, зайцам и многим другим хищным зверям, которые всю длинную зиму проводят на морозе и даже спят на снегу, переносить холода помогают их теплые шубы. Выручают они и диких копытных — лосей, оленей, косуль.
Крысы и мыши, не впадающие в спячку, поддерживают температуру тела за счет большой активности и питания. К тому же они обитают в глубоких укрытиях, где температура воздуха более или менее постоянная и часто плюсовая. Но и они, оказывается, могут прекрасно жить при значительных минусовых температурах. Бывает, что крысы поселяются в холодильниках, питаясь хранящимися там продуктами. Свои гнезда они устраивают не только в стенах, под полами или между перекрытиями, но подчас и внутри холодильных камер в самих продуктах: в замороженных тушах скота, битой птицы, иногда в крупных головках сыра. Для постройки гнезда они используют различные материалы: перья, пух, шерсть, обрывки бумаги, тряпки и даже мелко расщепленные на волокна мышцы и сухожилия заселяемых ими туш. И хотя в холодильнике температура минус 10–20°, в гнездах крыс настолько тепло, что они даже выводят в них потомство. В этом отношении крысам не уступают и мыши. Обилие корма поддерживает высокую активность и жизнеспособность грызунов и способствует успешному воспитанию их молодняка.
Осенью, едва уловив изменения температуры, многие грызуны (белки, бурундуки, хомяки, слепыши, пищухи, круганчиковая мышь, полевки и другие) развивают бурную деятельность по заготовке корма на зиму. Большой запасливостью отличаются и лесные желтогорлые мыши. В Беловежской пуще, например, в дупле векового дуба нашли однажды 47 килограммов желудей, натасканных туда этими грызунами. Установлено, что эти мыши, как и многие другие грызуны, наиболее интенсивно запасают корма при снижении температуры воздуха до 8–9°. В жару, когда температура доходит до 30–34°, запасание корма приостанавливается.
Большое защитное значение для животных в борьбе с холодом имеет их жир. Он — и запас энергии, и в то же время теплоизолятор. Не случайно в теле, особенно под кожей медведей, барсуков и других зверей, к зиме накапливаются значительные его запасы. У китов, тюленей, моржей кожа голая, без защитного волосяного покрова. Но они плавают в ледяной воде и не мерзнут. От переохлаждения их защищает находящийся под кожей слой жира (у китов он может достигать в толщину 30 сантиметров и более). У императорских пингвинов, например, к началу зимы в теле накапливается до 10–15 килограммов жира на 35 килограммов общего веса.
У птиц и млекопитающих есть еще одна особенность терморегуляции, температура кончиков ног у них всегда значительно ниже температуры других участков тела (зимой она доходит до нуля). Вреда это им не приносит, так как в нижних частях конечностей у них есть особые пучки капилляров, в которых теплая артериальная кровь обогревает более холодную венозную. То, что температура лап у животных достигает нулевой, имеет для них жизненно важное значение, так как если бы зимой соприкасающиеся со снегом лапы куропатки, например, были теплыми, снег бы под ними таял и птица быстро примерзла бы к месту.
Существенное значение для животных имеет и тот факт, что у них жир, находящийся в нижней части ног, отличается по своим свойствам и составу от жира верхней части ног и тела. Обычно животный жир с понижением температуры затвердевает и становится хрупким. Казалось бы, кончики ног при соприкосновении со снегом должны на морозе очень быстро одеревенеть. Однако этого не происходит по той причине, что температура затвердевания жира конечностей гораздо ниже таковой внутреннего жира. Это обстоятельство, по словам американского биолога Д. Альбуа, давно уже известно фермерам Лабрадора, и они используют жир ног забитого скота для смазывания и сохранения эластичности конской упряжи и кожаной обуви.
Многие животные в холодное время прекращают активную деятельность, забираются в укрытия и засыпают. Одни из них, например медведи и барсуки, погружаются в сравнительно чуткий зимний сон, другие — суслики, хомяки, сурки, тушканчики, некоторые летучие мыши, — впадают в настоящую глубокую спячку. Это избавляет их от забот о пропитании в трудную зимнюю пору и наилучшим образом решает проблему борьбы с холодом.
Польский писатель, этнограф и натуралист В. Островский, будучи в Южной Америке, совершал путешествие по реке Паране. Однажды он заночевал на берегу реки, но спать лег не в палатке, как обычно, а устроил себе постель прямо на земле. Ночь была прохладная. Он лег на бок, накрылся с головой и уснул. Спустя некоторое время его что-то разбудило. Оказалось, змея. Он почувствовал, как она заползла на постель, проползла по нему и свернулась у сгиба колен. Судя по тяжести, змея была большая. Такое соседство не доставляло путешественнику удовольствия, и он решил избавиться от непрошенной компаньонки. Резким движением колен он сбросил с себя одеяло вместе со змеей, а сам отскочил в противоположную сторону.
Нечто подобное произошло и с одним англичанином, заночевавшим в лесу на ферме. Неоднократно отмечались такие случаи и на территории нашей страны.
Молодой археолог разыскивал в степи на юге Украины следы палеолитической стоянки человека. Однажды, сильно устав, он лег, не раздеваясь, на спальный мешок и быстро и крепко уснул. Разбудили его яркие утренние лучи солнца. Открыв глаза, ученый хотел было подняться, но вдруг почувствовал, что на груди у него что-то лежит. Это была степная гадюка. Осторожно, чтобы не разозлить змею, археолог сбросил ее на землю и гадюка уползла прочь.
Почему же змеи ползут к спящим людям?
Здесь следует немного сказать о свете и тепле. После того, как Ньютон доказал, что белый свет является совокупностью простых цветов, ученые старались более подробно изучить природу солнечного света. В конце XVIII в. английский астроном и физик В. Гершель решил исследовать солнечный спектр с помощью термометра. Для этого он пропускал солнечный луч через трехгранную призму, разлагая его на составные части, и с помощью очень чувствительных термометров определял температуру каждого цвета спектра. К удивлению ученого, термометр, помещенный за красной частью спектра, показывал более высокую температуру по сравнению с контрольными термометрами, расположенными сбоку. В то же время за фиолетовой частью спектра температура понижалась. Так были открыты инфракрасные и ультрафиолетовые лучи.
Позже было установлено, что тепло, точнее тепловое излучение, представляет собой электромагнитные волны. Причем тепловой эффект присущ любому излучению — и видимому свету, и радиоволнам, и рентгеновским или гамма-лучам, а также невидимым лучам солнечного спектра — ультрафиолетовым и инфракрасным. Инфракрасные лучи представляют собой электромагнитное излучение с длиной волны от 0,76 до 500 микрон. Около 50 % излучения Солнца составляют инфракрасные лучи. Источником их может служить любое нагретое тело, газы, пары. Тело человека и животных почти всегда теплее окружающей среды и также является источником инфракрасных лучей.
Люди обычно воспринимают тепло при помощи своих терморецепторов. Способны ощущать тепловое излучение и животные, которые реагируют на него в зависимости от температуры окружающей среды. Этим и объясняется, что в холодное время суток, ночью, змеи ползут на тепло костра или человеческого тела. В Киргизской ССР был случай, когда змея забралась внутрь радиоприемника через щель возле крышки: ее привлекло тепло нагретых радиоламп.
Ни люди, ни животные инфракрасных лучей не видят— ведь это лишь одна из форм теплоты. И тем не менее некоторые животные, например гремучие змеи, способны их улавливать.
Как бы компенсируя недостатки ряда органов чувств, природа наделила этих змей способностью улавливать инфракрасные лучи при помощи специальных органов — термолокаторов. У гремучих змей впереди и несколько ниже глаз есть два конических углубления, две ямки, прикрытые очень тонкими мембранами (толщина их не превышает 0,025 миллиметра), за которыми находятся воздушные полости. Мембраны усеяны огромным количеством особых, чувствительных к теплу, нервных окончаний. На поверхности мембраны (площадь ее 3–4 квадратных миллиметра) насчитывается до 3500 таких терморецепторов. Полость, находящаяся позади мембраны, сообщается с внешней средой узким каналом, открывающимся перед самым глазом змеи. Когда этот канал при помощи маленького кольцевого мускула замыкается, потеря тепла в полости уменьшается и давление в ней изменяется. По смещению мембраны змея определяет, какое количество тепла попадает в лицевую яму. Термолокаторы у змей строго специализированы: они чувствительны только к инфракрасному излучению и нечувствительны к видимому свету.
Змей, обладающих такими лицевыми ямками с «вмонтированными» в них термолокаторами, называют ямкоголовыми. В семействе ямкоголовых насчитывается около 120 видов змей. К ним относятся все гремучие змеи и щитомордники. Из них в нашей стране наиболее распространен обыкновенный, или Палласов, щитомордник.
Тепловые органы змей улавливают не только тепло, но и величину и даже позу животного или человека. В полной темноте змея знает, куда сделать бросок на добычу или на врага. Точность наводки змеи на цель облегчается тем, что ее термолокаторы расположены по обеим сторонам головы. В том случае, например, когда в левую ямку попадает больше тепла, змея узнает, что источник тепла находится слева, и наоборот. Если же в обе ямки попадает одинаковое количество тепла, змея знает, что источник тепла находится прямо перед ней.
Чувствительность термолокаторов ямкоголовых змей поразительна: на расстоянии полуметра змея легко чувствует стакан с водой, температура которой лишь немного выше температуры окружающего воздуха. Ученые установили, что гремучие и другие змеи, обладающие такими органами, улавливают разницу в температуре, равную тысячной доле градуса. Заметим, что терморецепторы кожи человека способны уловить разницу в температуре, равную лишь десятой доле градуса. Температурная разница в 0,0018 градуса уже заставляет змею насторожиться, после чего она бесшумно начинает приближаться к живому объекту — будь то лягушка, мышь, птица и т. д.
Способность змей улавливать тепло (точнее, инфракрасные лучи), излучаемое другими животными, помогает им отыскивать добычу в любое время суток. Обычно они ловят таких теплокровных животных, как мышевидные грызуны и мелкие птички. Так, гремучая змея обнаруживает мышь на расстоянии в несколько метров только потому, что мышь теплее окружающего воздуха. И лишь самая маленькая из птиц — колибри — никогда не попадается в зубы змеи. Найти гнездо этой птички змее не удается даже с ее высокочувствительным тепловым прибором. Секрет этого заключается в том, что в холодные тропические ночи температура тела у колибри резко снижается и становится равной температуре окружающего воздуха. Птички как бы цепенеют, что предотвращает потерю энергии, запас которой у них, при крохотной величине, недостаточен. Вполне естественно, что тепловой локатор змеи в таких условиях остается бессильным: он выявляет лишь те тела, которые хоть немного, но теплее окружающей среды.
У некоторых удавов термочувствительные ямки расположены на губе. Положительно реагируют на поток инфракрасного излучения также гюрза, гадюка Радде, песчаный удавчик, поворачивающие голову в сторону источника излучений.
Одно время считали, что кальмары способны видеть инфракрасные лучи при помощи особых термоскопических глаз. Сейчас такая их способность отрицается: ведь температура живущих в воде животных, скажем рыб, не отличается от температуры воды, а тела теплокровных животных охлаждаются в воде очень быстро, и потому даже тонкий слой воды полностью поглощает их тепловое излучение.
Изучение термолокаторов змей позволило ученым создать сложные электронные приборы ночного видения, помогающие людям водить машины в темноте, фотографировать различные объекты в инфракрасных лучах, рассматривать предметы ночью при помощи специальных инфракрасных биноклей. Изучение термолокаторов гремучей змеи показало, что чувствительность его очень высока и составляет миллионную долю ватта. Но чувствительность созданных человеком приборов, улавливающих инфракрасные лучи, в сотни тысяч раз выше. Есть, например, снайперские винтовки, инфракрасные прицелы которых позволяют в полной темноте обнаружить цель благодаря излучаемому ею теплу на расстоянии нескольких сотен метров.
Большинство представителей семейства кошачьих имеет склонность к обзору местности с высоты. Крупные лесные кошки-рыси вообще значительную часть времени проводят на деревьях, находясь в засаде или погоне за добычей. А львы и леопарды в саваннах Африки приспособились в жаркое время отдыхать на деревьях, распластавшись на ветках и опустив вниз лапы.
Случается, однако, что кошки не удерживаются на высоте и падают. Но и в падении у них есть свои особенности. Многим приходилось наблюдать, как падает обыкновенная кошка, сорвавшись с карниза дома, с дерева или с забора. Сначала она падает к земле головой, спиной или боком, но затем, сделав резкий поворот в воздухе, вывертывается и становится на лапки. И так всегда. Как бы ни падала кошка, приземляется она всегда на лапки и тотчас же может бежать дальше.
Такое мгновенное выравнивание положения тела у кошек обеспечивается действием ее вестибулярного аппарата.
Вестибулярный аппарат — один из важнейших органов чувств находится во внутреннем ухе у человека и млекопитающих животных. Он воспринимает изменения положения головы и тела в пространстве и играет большую роль в обеспечении равновесия тела в покое и в движении.
Вестибулярный аппарат представлен в ухе тремя взаимно перпендикулярными полукружными каналами, заполненными студенистой жидкостью — эндолимфой. Стенки каналов выстланы изнутри нервными клетками, которые оканчиваются волосками, погруженными в студенистую жидкость. В самой жидкости находятся кристаллические включения из углекислого кальция — арагонита, которые называются отолитами (ушными камешками) или статолитами. При поворотах головы или изменении положения тела в пространстве в полукружных каналах возникает движение эндолимфы, которое ведет к отклонению волосков чувствительных нервных клеток. Раздражение нервных окончаний и отклонение волосков усиливается и смещением отолитов, особенно при изменении положения головы. Возбуждение нервных окончаний полукружных каналов передается по вестибулярным нервам в продолговатый мозг, а затем в мозжечок и кору больших полушарий, откуда и идет команда соответствующим мышцам для выравнивания положения тела. При значительном и длительном раздражении органов равновесия могут возникать ощущения головокружения, тошнота, рвота, холодный пот, расстройство деятельности сердца, как это бывает при укачиваниях на море и в самолетах. Аналогичные явления отмечаются и у животных.
При падении кошки вестибулярный аппарат помогает ей осуществить ряд последовательно возникающих рефлексов и приземлиться на лапы. Ненормальное положение тела в пространстве приводит в раздражение отолитовый прибор каналов внутреннего уха кошки. В ответ на это раздражение происходит рефлекторное сокращение мускулов шеи, приводящих голову животного в нормальное положение по отношению к горизонту. Это — первый рефлекс. Сокращение же шейных мышц и постановка шеи при повороте головы являются возбудителем для осуществления другого рефлекса — сокращения определенных мышц туловища и конечностей. В итоге животное принимает правильное положение. И. П. Павлов, давший объяснение этому сложному рефлексу, указывает, что кошки становятся на лапы при падении даже в тех случаях, когда у них удалены большие полушария головного мозга.
Этот сложный врожденный цепной рефлекс выработался у некоторых животных как приспособление к образу жизни. Ведь животным, особенно из семейства кошачьих, часто приходится во время охоты прыгать и падать с деревьев, скал или со спины своей жертвы. И не будь у них этого приспособительного рефлекса, от них не только ушла бы добыча, но иной раз и самому охотнику пришлось бы пострадать от зубов, рогов или копыт своей жертвы.
Из примера с кошкой видно, какое значение имеют для животного органы равновесия и как при этом происходит сохранение нормального положения тела в пространстве. Большую роль в этом играют так называемые установочные, или выпрямительные, рефлексы, сущность которых сводится к восстановлению нормальной позы тела, если она нарушена. В осуществлении их, кроме вестибулярного аппарата, регулирующую роль играет также продолговатый и средний мозг.
Кошки могут произвольно менять позу и лежать на боку, спине или свернувшись клубочком. Многие животные, например морские свинки, крысы, мыши, так лежать не могут. Какое бы положение вы ни придавали телу морской свинки или крысы, у нее срабатывают выпрямительные рефлексы и она тотчас поворачивает голову кверху теменем.
Собаки в отличие от кошек при падении не всегда становятся на четыре лапы. К. Лоренц рассказывает, как его шотландский терьер Эли в погоне за кошкой одним прыжком взлетела на развилку дерева, на высоту плеч взрослого человека. Затем она вскочила на тонкую ветку, а потом еще раз взметнулась вверх, схватила кошку и вместе с ней шлепнулась на траву. Кошка осталась цела и невредима, а собака несколько недель хромала из-за разрыва мышцы в плече, которым она стукнулась о землю. Этой травмы не произошло бы, имей Эли способность падать на лапы.
Вестибулярный аппарат развит и у других позвоночных животных, в том числе и у птиц. Однако чувствительность его у различных видов пернатых, по-видимому неодинакова. Необычные положения тела и головы птицы переносят по-разному. Сова, например, может повернуть голову на 180 градусов да еще клювом кверху! Короткоухую сову, спокойно сидящую на ветке, в такой интересной позе можно было видеть на редком фотоснимке, помещенном в газете «Комсомольская правда». Там же — фотография дикого гуся. Вместе с другими птицами он приготовился спикировать и для этого повернулся вверх ногами. Но голову все же держит, как и положено всем птицам, хотя для этого ему пришлось основательно перекрутить шею. Сохранение привычной ориентации у гуся также обеспечивается вестибулярным аппаратом.
Органы равновесия есть у всех высших позвоночных животных. Имеются они и у многих беспозвоночных, только устроены они по-разному.