Фейнмановские лекции по физике 7 - Фейнман Ричард Филлипс 8 стр.


Так что мы действительно можем выразить силу, действующую на произвольную площадь, через элементы Sij и полностью описать внутреннее напряжение.

Уравнение (31.24) говорит, что тензор Sij связывает силу Sn с единичным вектором n точно так же, как aij связывает Р с Е. Но поскольку n и Sn — векторы, то компоненты Sij при изменении осей координат должны преобразовываться как тензор. Так что Sij действительно тензор.

Можно также доказать, что Sij симметричный тензор. Для этого нужно обратить внимание на силы действующие на маленький кубик материале. Возьмем кубик, rpaни которого параллельны осям координат, и посмотрим на eго разрез (фиг. 31.9).

где eiэлектрическое поле, a Pijkпьезоэлектрические коэф­фициенты (пьезомодули), составляющие тензор. Можете ли вы сами доказать, что если у кристалла есть центр инверсии (т. е. если он инвариантен относительно замены х, у, z®-х,-y,-z), то все его пьезоэлектрические коэффициенты равны нулю.

§ 8. Четырехмерный тензор электро­магнитного импульса

Все тензоры, с которыми мы сталкивались в этой главе, были связаны с трехмерным пространством; они определялись как величины, имеющие известные трансформационные свойства при пространственных поворотах. А вот в гл. 26 (вып. 6) мы имели возможность воспользоваться тензором в четырехмерном про­странстве-времени: это был тензор электромагнитного поля Fmv. Компоненты такого четырехмерного тензора особым образом преобразуются при преобразованиях Лоренца. (Мы этого, прав­да, не делали, но могли бы рассматривать преобразования Ло­ренца как своего рода «вращение» в четырехмерном «простран­стве», называемом пространством Минковского; тогда аналогия с тем, что мы рассматривали здесь, была бы ярче.)

В качестве последнего примера мы хотим рассмотреть дру­гой тензор в четырех измерениях (t, x, y, z) теории относитель­ности. Когда мы говорили о тензоре напряжений, то опреде­ляли Sij как компоненту силы, действующую на единичную площадку. Но сила равна скорости изменения импульса со временем. Поэтому вместо того, чтобы говорить «Sxy — это х-компонента силы, действующей на единичную площадку, пер­пендикулярную оси у», мы с равным правом могли бы сказать: «Sxy — это скорость потока x-компоненты импульса через еди­ничную площадку, перпендикулярную оси у». Другими словами, каждый член Sij представляет поток i-й компоненты импульса через единичную площадку, перпендикулярную оси j. Так обстоит дело с чисто пространственными компонентами, но они составляют только часть «большего» тензора Smv в четырехмер­ном пространстве m. и v=t, x, у, z), содержащего еще дополни­тельные компоненты Stx, S yt, Stt и т. п. Попытаемся теперь выяс­нить физический смысл этих дополнительных компонент.

Нам известно, что пространственные компоненты представ­ляют поток импульса. Чтобы найти ключ к распространению этого понятия на «временное направление», обратимся к «по­току» другого рода — потоку электрического заряда. Скорость потока скалярной величины, подобной заряду (через единичную площадь, перпендикулярную потоку), является пространствен­ным вектором — вектором плотности тока j. Мы видели, что временная компонента вектора потока — это плотность теку­щего вещества. Например, j можно скомбинировать с плотно­стью заряда jt=r и получить четырехвектор jm=(r, j), т. е. значок m у вектора jm принимает четыре значения: t, х, у, z. Это означает «плотность», «скорость потока в x-направлении», «скорость потока в y-направлении» и «скорость потока в z-направлении» скалярного заряда.

Теперь по аналогии с нашим утверждением о временной ком­поненте потока скалярной величины можно ожидать, что вместе c Sxx,Sxy и Sxz, описывающими поток x-компоненты импульса, должна быть и временная компонента Sxt , которая по идее дол­жна бы описывать плотность того, что течет, т. е. Sxt должна быть плотностью х-компоненты импульса. Таким образом, мы можем расширить наш тензор по горизонтали, включив в него t-компоненты, и в нашем распоряжении оказываются:

Sxt плотность x-компоненты импульса,

Sxx поток z-компоненты импульса в направлении оси х,

Sxy поток y-компоненты импульса в направлении оси у,

Sxz поток z-компоненты импульса в направлении оси z.

Аналогичная вещь происходит и с y-компонентой; у нас есть три компоненты потока: Syx , Syy и Syz , к которым нужно добавить четвертый член:

Syt плотность y-компоненты импульса,

а к трем компонентам Szx, Szy и Szz мы добавляем

Szt плотность z-компоненты импульса.

В четырехмерном пространстве у импульса существует также и t-компонента, которой, как мы знаем, является энер­гия. Так что тензор Sij следует продолжить по вертикали с включением в него Stx, Sty и Stz, причем

Stx поток энергии в направлении оси х, Sty поток энергии в направлении оси у, (31.28) Stz поток энергии в направлении оси z,

т. е. Stx— это поток энергии в единицу времени через поверх­ность единичной площади, перпендикулярную оси х, и т. д. Наконец, чтобы пополнить наш тензор, нужна еще величина Stt, которая должна быть плотностью энергии. Итак, мы расширили наш трехмерный тензор напряжений до четырехмерного тензора энергии-импульса Smv. Индекс m может принимать четыре зна­чения: t, х, у и z, которые означают «плотность», «поток через единичную площадь в направлении оси х», «поток через единич­ную площадь в направлении оси y» и «поток через единичную площадь в направлении оси z». Значок v тоже принимает четы­ре значения: t, х, у, z, которые говорят нам, что же именно течет: «энергия», x-компонента импульса», «y-компонента им­пульса» или же «z-компонента импульса».

В качестве примера рассмотрим этот тензор не в веществе, а в пустом пространстве с электромагнитным полем. Вы знаете, что поток энергии электромагнитного поля описывается век­тором Пойнтинга S=e0c2EXВ. Так что х-, у- и z-компоненты вектора S с релятивистской точки зрения являются компонентами: Six, Stн и Stz нашего тензора энергии-импульса. Симметрия тензора Sij переносится и на временные компоненты, так что четы­рехмерный тензор Smv тоже симметричен:

Smv=Svm. . (31.29)

Другими словами, компоненты Sxt, Syt, Szt, которые представ­ляют плотности х-, у- и z-компонент импульса, равны также х-, у- и z-компонентам вектора Пойнтинга S, или, как мы ви­дели раньше из других соображений, вектора потока энергии.

Назад Дальше