Расчеты конструктору - Сергей Гаврилов 2 стр.


К примеру с помощью программы расчета геометрии коробовой кривой можно рассчитать геометрические размеры обжатого уплотнительного круглого резинового кольца.

Построение:

Задано:

Большая полуось ОА… ОА = ОP..

Малая полуось ОВ.

Алгоритм Расчета:

ОА = ОP.. Построением..

Построением: РВ = ОА – ОВ; ТВ = РВ..

АВ =sqrt( АО*АО + ОВ*ОВ ); АТ = АВ – ТВ; ХТ = АТ / 2;

Из подобия треугольников: АХ / АО = АE / АВ; отсюда:

АE = АХ*АВ / АО; аналогично: ВК = ( АХ + ВТ )* АВ / ВО;

ОE = ОА – АE; ОК = ВК – ОВ; ХВ = ХТ + ТВ = AX + BT;

Для расчета площади сечения коробовой кривой :

Большой радиус Rb = КВ; Зная стороны ВК и ХВ – находим угол сектора « W ».

Зная радиус Rb и угол сектора « W » – найдем площадь сектора.

Зная стороны ОК и ОE прямоугольного треугольника – найдем его площадь

и вычтем из площади сектора радиуса Rb.

Малый радиус Rm = EА; Зная угол « W » прямоугольного треугольника КХВ

определяем угол сектора малого радиуса как:

G = 90 – W; Далее: определим площадь сектора малого радиуса.

Площадь сечения коробовой кривой найдена.

Найдем диаметр круга равный по площади заданной коробовой кривой:

.d =sqrt( 4*S / Pii ); Где S – площадь заданной коробовой кривой.

Контрольный расчет:

Дано:

Большая ось = 80; Малая ось = 60;

Расчет:

Больший радиус = 50,0..

От оси до центра Б. радиуса = 20,0..

Меньший радиус = 25,0..

От оси до центра M. радиуса = 15,0..

Угол раствора Б. радиусов = 73,73979529168804..

Площадь ограниченная коробовой кривой = 3776,62456647;

Диам. Круга равной площади = 69,34369289;

Геометрия радиусной кривой.

Все расчеты по разным вариантам исходных данных:

Хорда L; Прогиб Н; Радиус R; Угол G.

Эти расчеты часто требуются для нахождения элементов детали имеющих форму сегмента окружности.

Расчет производим из следующих соотношений:

В = sqrt( R*R – X*X); L = X + X; H = R – B; G = аrcsin ( X / R );

Длина дуги = Pii * R * G / 90;

Площадь сектора Ss = Pii * R * R * G / 180;

Площадь треугольника под хордой St = L * B /2;

Площадь сегмента ( горбушки ) Sg = Ss – St;

Некоторые комбинации данных не позволяют прямого расчета,

тогда применяем метод компьютерного подбора.

Контрольный расчет:

Радиус R = 1000;

Диаметр D = R+R; D = 2000; Хорда L = 765,3668647;

Стрела прогиба максимальная H = 76,12046749;

Угол: Центр – Хорда: 2 * G = Au = 45 градусов..

Площадь сектора круга с углом = Au:

Sk=Pii*D*D* Au /(4*360); Sk = 392699,0816987241;

Площадь треугольника в секторе:

St=(L/2)* B; St = 353553,3905932738;

Площадь горбушки отсеченной хордой:

S = Sk-St; S = 39145,69110545033;

Длина дуги над хордой:

L=Pii*D*Au /360; L = 785,3981634;

Координаты радиусной кривой.

Построение части окружности методом подъема применяется тогда, когда радиус слишком велик

для традиционного построения, либо когда точка центра радиуса недоступна.

Построение части окружности методом подъема.

Построение:

Задаем максимальный размер хорды L.

Из середины максимальной хорды L строим перпендикуляр Н1.

Х1 = L / 2; В = sqrt( R*R – X1*X1); H1 = R – B;

Определили максимальную стрелу прогиба кривой H1.

Далее задаем произвольное расстояние от центральной оси Х2.

Находим стрелу прогиба Н2 = R – ( sqrt( R*R – X2*X2));

Находим высоту подъема в точке Х2: Hm = H1 – H2;

Задавая ряд текущих значений Х2 и рассчитывая соответствующие высоты подъема Hm

– получаем достаточное количество точек,

для построения радиусной кривой по точкам на этой кривой.

Контрольный расчет:

Исходные данные:

Радиус R = 10000;

Хорда максимальная заданная L = 8000;

Подъем максимальный в центре хорды = 834,8486100883201.

Задаем ряд точек:

От центра хорды до точки по оси Х-Х = 3000,0.

Величина подъема ( перпендикуляра ) = 374,2406242577763.

От центра хорды до точки по оси Х-Х = 2000,0.

Величина подъема ( перпендикуляра ) = 632,8075812210318.

От центра хорды до точки по оси Х-Х = 1000,0.

Величина подъема ( перпендикуляра ) = 784,7229811545203.

От центра хорды до точки по оси Х-Х = 500,0.

Величина подъема ( перпендикуляра ) = 822,3407878074104.

От центра хорды до точки по оси Х-Х = 0,001.

Величина подъема ( перпендикуляра ) = 834,848610088271.

Расчет геометрии треугольника.

Напротив сторон треугольника лежат одноименные углы.

Известны три стороны треугольника.

Напротив сторон треугольника лежат одноименные углы.

Сторона = a. Сторона = b. Сторона = c.

Решение:

.x=((b*b)+(c*c)-(a*a))/(2*b*c)… au=аrccos(x)… Угол А.

.x=((a*a)+(c*c)-(b*b))/(2*a*c)… bu=аrccos(x)… Угол В.

.cu=180-(au+bu)… Угол С.

....

Известны две стороны и угол между ними.

Сторона = a; Сторона = b; Угол = cu..

Решение:

.с= sqrt ((a*a)+(b*b))-(2*a*b*(cos(cu)))… Сторона « с ».

.x=((b*b)+(c*c)-(a*a))/(2*b*c)… au=arccos(x)… Угол А.

.x=((a*a)+(c*c)-(b*b))/(2*a*c)… bu=arccos(x)… Угол В.

..... .....

Известны два угла и сторона между ними.

Сторона = a; Угол = bu; Угол = cu;

Решение: .au=180-(bu+cu)… Угол А. .b=(a*(sin(bu)))/(sin(au))… Сторона В.

.c=(b*(sin(cu)))/(sin(bu))… Сторона С.

..... .....

Добавочный расчет в алгоритм Треугольника.

Решение:

R=a/(2*(sin(au))… R – Радиус описанной окружности.

.hc=b*(sin(au))… Высота из угла С.

.hb=a*( sin(cu))… Высота из угла B.

.ha=c*(sin(bu))… Высота из угла A.

S=a*ha/2.. Площадь треугольника.

Pe=a+b+c.. Периметр.

.rv=(S+S)/Pe… Радиус вписанной окружности.

…..

Контрольный расчет:

Напротив сторон треугольника лежат одноименные углы.

Сторона А = 15,77350269;

Сторона В = 14,14213562;

Сторона С = 11,54700538;

Угол А = 75; Угол В = 60; Угол С = 45..

Высота А= 10; Высота В = 11,1535507;

Высота С = 13,66025403;

Описанный радиус = 8,164965804;

Вписанный радиус = 3,804268442;

Площадь = 78,86751346;

……

Параметры сечений.

Расчет параметров сечения круга.

Сечение – Круг:

Диаметр круга d.

Контрольный расчет:

Круглое сечение: Диаметр = 80;

S=5026,548246; Jxx =2010619,298; Wxх=50265,48246.. .i=20,0…

Решение:

.s=d*d*Pii/4… Площадь круга.

.wr=Pii*d*d*d/16… Момент сопротивления радиальный.

.wx=wr/2… Момент сопротивления изгибу.

.jr=wr*d/2… Момент инерции радиальный.

.jx=jr/2 … Момент инерции по оси Х-Х.

.rm=sqrt(jx/s)… Радиус инерции оси Х-Х.

Расчет параметров трубного сечения.

Сечение – трубное.

Наружный диаметр d.

Внутренний диаметр dv.

.x=(d-dv)/2… Толщина стенки трубы.

.sn=d*d*Pii/4… Площадь отверстия.

.sv=dv*dv*Pii/4… Площадь по внешнему контуру.

.s=sn-sv… Площадь трубного сечения.

.jrn=Pii*(d**4)/32…

.jrv=Pii*(dv**4)/32…

.jr=jrn-jrv… Момент инерции радиальный.

.jx=jr/2… Момент инерции по оси Х-Х.

.wr=jr*2/d… Момент сопротивления радиальный.

.wx=wr/2… Момент сопротивления изгибу.

.rm=sqrt(jx/s)… Радиус инерции оси Х-Х.

Контрольный расчет:

Круглое трубное сечение: Диаметр = 80; Отв. Ф = 60..

Площадь сечения S=2199,11485751;

Jxx =1374446,785946; Wxх=34361,1696486.. .i=25,0..

……..

Расчет параметров сечения прямоугольника.

Сечение – Прямоугольник.

Высота сечения h.

Ширина сечения b.

Контрольный расчет:

Прямоугольное сечение: Высота = 80; Ширина = 60..

S=4800; Jxx =2560000; Wxх= 64000..

Jyy =1440000; Wyy= 48000.. .i=17,320510…

Диагональ = 100..

.s=h*b… Площадь прямоугольника.

.dg =sqr ((b*b)+(h*h))… Диагональ прямоугольника.

.jx=b*h*h*h/12 … Момент инерции по оси Х-Х.

.wx=b*h*h/6… Момент сопротивления изгибу по оси Х-Х.

.jy=h*b*b*b/12… Момент инерции по оси Y-Y.

Выбираем меньшее значение момента инерции « j min ».

.rm=sqrt(j min/s)… Радиус инерции минимальный.

Расчет параметров сечения прямоугольной трубы.

Сечение – Прямоугольная труба.

Высота сечения h.

Ширина сечения b.

Высота отверстия hm.

Ширина отверстия bm.

Расчет:

.s=(h*b)-(hm*bm)… Площадь сечения прямоугольной трубы.

.jx=(b*h*h*h/12)-(bm*hm*hm*hm/12)… Момент инерции по оси Х-Х.

.wx=2*jx/h… Момент сопротивления изгибу по Х-Х.

.jy=(h*b*b*b/12)-(hm*bm*bm*bm/12)… Момент инерции по оси Y-Y.

.wy=2*jy/b… Момент сопротивления изгибу по Y-Y.

Выбираем меньшее значение момента инерции « j min ».

.rm=sqrt(j min/s)… Радиус инерции минимальный.

Контрольный расчет:

Прямоугольная труба.

Высота = 80;

Высота отв.= 60;

Ширина = 60..

Ширина отв.= 40..

S=2400; Jxx =1840000; Wxх= 46000.. Jyy =1120000; Wyy= 37333,(3)..

.i=21,60246899… Диагональ = 100..

Расчет параметров сечения треугольника.

Сечение – Треугольник.

Высота треугольника h.

Основание треугольника b.

Центр тяжести ЦТ. От основания до ЦТ размер Z.

Расчет:

Sk=(h*b)/2… Площадь сечения.

Jxk=b*h*h*h/36… Момент инерции по оси Х-Х.

Для волокна вершины треугольника:

Mik=Jxk/(h*2/3)… Момент сопротивления изгибу по оси Х-Х.

Для волокна основания треугольника:

Mio=Jxk/(h*1/3)… Момент сопротивления изгибу по оси Х-Х.

Rk=sqrt(Jxk/Sk)… Радиус инерции сечения.

Z=h/3… Высота Ц.Т. от основания.

Контрольный расчет:

Треугольное сечение: Высота=80; Основание=60;

S=2400; Z =26,6(6); от подошвы до центра тяжести..

Jxx =853333,3(3); Wxn=32000,0; для нижних волокон..

Wxv=16000,0; … для верхних волокон..

.i=18,85618083..

Расчет параметров сечения тавра.

Сечение – Тавр.

Высота пера h.

Толщина пера b.

Высота подошвы hm.

Ширина подошвы bm.

Центр тяжести ЦТ. От подошвы до ЦТ расстояние xc.

Контрольный расчет:

Тавровое сечение:

Высота ребра = 80.. Толщина ребра =20..

Ширина подошвы = 60.. Толщина подошвы = 40..

Площадь S=4000.;

XC=44,0..; от подошвы до центра тяжести..

Jxx =4629333,(3)..

Х-Х – параллельна подошве..

Wxx=60912,28070175;.. минимальное..

Jyy=773333,(3)..;

Wyy=25777,(7);..

Радиус инерции .i= 13,90444.. минимальное..

…….

Расчет:

.s=(h*b)+(hm*bm)… Площадь сечения тавра.

.j1=b*h*h*h/12… Момент инерции пера относительно Ц.Т. пера.

.j2=bm*hm*hm*hm/12… Момент инерции подошвы относительно Ц.Т. подошвы.

.f1=h*b… Площадь пера.

.f2=hm*bm… Площадь подошвы.

.x1=(h/2)+hm…

.x2=hm/2… Gsf = 461030/2725231222…

Центр тяжести тавра от низа подошвы « xc ».

.xc=((f1*x1)+(f2*x2))/(f1+f2)…

.r1=(((h/2)+hm)-xc)… Радиус ц.т. пера от ц.т. тавра.

.r2=xc-(hm/2)… Радиус ц.т. подошвы от ц.т. тавра.

.jx1=j1+(r1*r1*f1)… Момент инерции смещенного пера.

.jx2=j2+(r2*r2*f2)… Момент инерции смещенной подошвы.

.jx=jx1+jx2… Момент инерции тавра по Х.

.wx=jx/((h+hm)-xc)… Момент сопротивления изгибу тавра по Х.

.jy1=h*b*b*b/12…

.jy2=hm*bm*bm*bm/12…

.jy=jy1+jy2… Момент инерции тавра по Y.

.wy=jy/(bm/2)… Момент сопротивления изгибу тавра по YY.

Выбираем меньшее значение момента инерции « j min ».

.rm=sqrt(j min/s)… Радиус инерции минимальный.

Расчет параметров сечения рельса.

Высота головки = h.

Ширина головки = b.

Высота стенки = hs.

Толщина стенки = bs.

Ширина подошвы = bm.

Толщина подошвы = hm.8888

Контрольный расчет:

Сечение типа Рельс:

Высота головки = 40..

Ширина головки =60..

Высота ребра = 80..

Толщина ребра =20..

Ширина подошвы = 100..

Толщина подошвы = 10..

S=5000.;

XC =69,80..; от подошвы до центра тяжести..

Jxx =9886466,(6)..

Х-Х – параллельна подошве..

Wxx=141639,923591;.. минимальное..

Jyy=1606666,(6)..

Wyy=32133,(3);..

.i= 17,925773.. минимальное..

……

Расчет:

.s=(h*b)+(hm*bm)+(hs*bs)… Площадь сечения рельса.

.j1=b*h*h*h/12… Момент инерции головки относительно собственного Ц.Т.

.j2=bs*hs*hs*hs/12 … Момент инерции стенки относительно собственного Ц.Т.

.j3=bm*hm*hm*hm/12… Момент инерции подошвы относительно собственного Ц.Т.

.f1=h*b … Площадь головки.

.f2=hs*bs … Площадь стенки.

.f3=hm*bm… Площадь подошвы.

.x1=(h/2)+hs+hm …

.x2=(hs/2)+hm…

.x3=hm/2…

Центр тяжести рельса от подошвы « xc ».

.xc=((f1*x1)+(f2*x2)+(f3*x3))/(f1+f2+f3)…

.r1=((h+hs+hm)-h/2)-xc… Радиус ц.т. головки от ц.т. рельса.

.r2=((hs/2)+hm)-xc… Радиус ц.т. стенки от ц.т. рельса.

.r3=xc-(hm/2)… Радиус ц.т. подошвы от ц.т. рельса.

.jx1=j1+(r1*r1*f1)… Момент инерции смещенной головки.

.jx2=j2+(r2*r2*f2)… Момент инерции смещенной стенки.

.jx3=j3+(r3*r3*f3)… Момент инерции смещенной подошвы.

.jx=jx1+jx2+jx3… Момент инерции рельса по ХХ.

.wx1=jx/((h+hs+hm)-xc)… Момент сопротивления изгибу рельса по ХХ.

.wx=jx/xc… Момент сопротивления изгибу рельса по ХХ.

Берем меньшее значение W из двух значений…

.jy1=h*b*b*b/12…

.jy2=hm*bm*bm*bm/12…

.jy3=hs*bs*bs*bs/12…

.jy=jy1+jy2+jy3… Момент инерции рельса по Y.

Выбор максимально удаленной части для оси Y-Y.

.wy=jy/(b/2)… Момент сопротивления изгибу рельса по YY.

.wy=jy/(bm/2)… Момент сопротивления изгибу рельса по YY.

Берем меньшее значение W из двух значений…

Выбираем меньшее значение момента инерции « j ».

.rm=sqrt(jx/s)…

.rm=sqrt(jy/s)…

Расчет параметров сечения трапеции.

Высота трапеции = h.

Верх трапеции = a.

Основание трапеции = b.

# Ведем расчет по классическим формулам 14-03-2020 г..

Назад Дальше