Исследования, проведенные в Казанском НПО "Компрессор", показали, что в области устойчивой работы ступени колеса компрессора наблюдаются низкоамплитудные пульсации давления, составляющие в основном менее 1%, в частотный диапазон пульсаций занимает практически всю область. В области вращающегося срыва амплитуда пульсаций перепада давления возрастает по отношению к первоначальной примерно на 6%. Частота пульсаций здесь не превышает 2,5 Гц. На участках помпажа частота пульсаций снижается до 1 Гц, а амплитуда возрастает до 38% по перепаду давления и 5% по давлению в диффузоре.
Помпаж может возникнуть при следующих ситуациях:
– Пуск компрессора и останов компрессора
– Работа на низких нагрузках или резкие изменения нагрузки
– Нестандартные режимы и ситуации, в частности, это "горячий пуск", изменение режима работы нагнетателя до значительного уменьшения расхода газа (приблизительно до 60% расчетного значения), -снижение частоты вращения нагнетателя ниже допустимой;
– Ложные срабатывания автоматики и электронных сигнализаторов помпажа (Так, анализ сигналов в предпомпажной зоне показывает, что спектральные составляющие, характеризующие собственно помпажные колебания, лежат в диапазоне 0,5-6 Гц. Спектральные составляющие сигнала датчика, лежащие выше 5-7 Гц, являются помехами).
– Колебаний давления газа в газопроводе, например, при изменении характеристики сети (газопровода) вследствие влияния параллельно включенных, но более напорных нагнетателей; появление разрежения во всасе компрессора из-за снегопада, образования гидратов и пр.
–– Изменения состава газа
–– Резкие технологические возмущения
–– Засорение фильтров
–– Неисправность обратного клапана
–– Самопроизвольное закрытие клапанов в нагнетании
или всасывании или закрытие этих клапанов из-за ошибки оператора, например, неправильное или несвоевременная перестановка кранов в трубной обвязке
–– Неисправность холодильника
–– Неисправность привода
––Попадание посторонних предметов на защитную решетку нагнетателя и ее обледенение и др.
Внешне помпаж проявляется в виде хлопков, сильной вибрации нагнетателя, отдельных периодических толчков, в результате чего возможны разрушение рабочего колеса нагнетателя, повреждение упорного подшипника, разрушение лабиринтных уплотнений и т.д.
Возникновение помпажа в нагнетателе вызывает колебания частоты вращения и температуры газа, и, как следствие, к возникновению неустойчивой работы осевого компрессора, что, в свою очередь, приводит к аварийной остановке ГПА.
Помпажные явления в осевом компрессоре могут охватить компрессор в целом и проявляться в виде периодического изменения давления воздуха на линии нагнетания, температуры воздуха, частоты вращения, а также повышенной вибрации агрегата и шума.
В каждом конкретном случае помпаж может вызываться различными причинами. Например, в условиях работы ГТУ на компрессорных станциях наблюдаются случаи появления помпажа при обмерзании входной части осевого компрессора при повышенной влажности наружного воздуха в период сильных туманов, снегопадов и метелей.
Аварийные остановки агрегатов из-за обмерзания входной части компрессора приводят к нарушению работы станции, уменьшают подачу товарного газа и отрицательно сказываются на работоспособности отдельных узлов и деталей ГТУ.
Помпаж осевого компрессора при обледенении входной кромки осевого компрессора может сопровождаться мощным хлопком и выбросом воздуха во всасывающий тракт агрегата. Следует отметить, что помпаж здесь наступает прежде всего в результате внезапного возмущения потока воздуха в момент отрыва кусков льда или налипшего снега со стенок конфузора или направляющих лопаток компрессора. В момент отрыва кусков льда с направляющего аппарата компрессора, возросшая при обледенении в межлопаточных каналах осевая составляющая скорости резко падает, вследствие быстрого увеличения проходного сечения решетки и лопатки как бы не успевают «подхватить» поток воздуха, что вызывает нарушение целостности потока и увеличение местных сопротивлений и, как следствие этого, выброс остатков льда во всасывающий патрубок.
Частота пульсаций достаточно жестко связана с емкостью сети и длиной трубопроводов. Амплитуды колебаний также зависят от емкости сети, ее инерционных и демпфирующих свойств. Зависимость от сети настолько велика, что один и тот же компрессор при одинаковых режимах по расходу газа и частоте вращения может работать как в режиме помпажа, так и без его проявления. Изменение емкости по расходу рабочего тела вызывает отклонение момента начала помпажа. Этим, в частности, объясняется то, что линия совместной работы компрессора и газовой турбины в установках с регенерацией теплоты отходящих газов проходит ближе к линии помпажа, чем в установках без регенерации теплоты отходящих газов.
Пример реальной картины помпажа в реальных производственных условиях компрессора полипропиленового производства представлен ниже.
Рис. 1.8. Картина помпажа пропиленового компрессора
а) Перепад давления на диафрагме ΔPo во всасе 1-й ступени
б) Перепад давления на диафрагме ΔPo во всасе 2-й ступени
в) Перепад давления на диафрагме ΔPo в нагнетании
Результатом помпажа компрессора стали нестабильность расхода и давления, резкие колебания потребляемой мощности, приводящие к усталости металла, были обнаружены повреждения подшипников вала колеса, увеличение зазоров в уплотнениях. Это в свою очередь привело к снижению КПД и в дальнейшем к сокращению межремонтного срока работы.
Граница помпажа
Точка на характеристике компрессора, левее которой возможен помпаж, называется граничной точкой помпажа.
При малых расходах поток газа с определенной степенью повышения давления занимает не всю полость проточной части, что приводит к расширению газа в определенных местах, часть потока газа из отвода возвращается обратно в рабочее колесо, а затем снова выбрасывается в отвод. Возникает т.н. вращающийся срыв потока газа в рабочем колесе. В результате этого происходит колебание давления и производительности, компрессор начинает работать с периодическими ударами и вибрацией. При определенных условиях может произойти прекращение подачи газа или даже разрушение компрессора.
При уменьшении производительности давление нагнетания растет до определенного максимального значения рмакс. При дальнейшем уменьшении V начинается нестационарная работа компрессора с ударами и колебаниями параметров. Интенсивность и частота этих ударов зависят от величины рк, плотности перекачиваемого газа, емкости сети трубопроводов и других факторов.
Явление помпажа в компрессорах выражено более явно, чем насосах, т.к. перекачиваемый газ в компрессоре и трубопроводе является аккумулятором энергии, способным вызывать упругие колебания в системе.
Кроме того, неустойчивая зона напорной характеристики газовых машин значительно шире, чему у насосов, главным образом за счет применения больших углов наклона лопастей или лопаток. Так, например, зона помпажа у многоступенчатых компрессоров достигает 60%, у нагнетателей наддува транспортных двигателей (при угле изгиба лопатки 900, она распространяется почти до номинального режима, т.е. для таких машин допустимы лишь перегрузки по производительности.
Теоретическая граница помпажа должна совпадать с режимом максимального давления. В действительности помпаж начинается при несколько больших производительностях.
Простейшее объяснение механизма возникновения неустойчивой работы компрессора в зоне границы помпажа показано на рис. 1.9.
Рис. 1.9. К объяснению границы помпажа
В общем случае напорная характеристика H=f(V) представляет собой кривую с двумя точками перегиба Нмакс и Нмин. Положение этих критических точек по оси абсцисс может быть различными. Чаще всего V Hмакс > 0, а V Hмин < 0.
Устойчивость работы машины в системе характеризуется способностью восстанавливать равновесное состояние после окончания действия возмущающих факторов, способных вывести систему из состояния равновесия.
Рассмотренные выше условия относятся к статическому состоянию системы. Если в системе есть аккумулятор энергии (резервуар, элементы с достаточной упругостью или упругие трубопроводные элементы), то при работе вблизи точки V Hмакс имеет место колебание напора и производительности и может произойти скачкообразный переход режима в точку 4. Аналогично может иметь место скачкообразный переход режима из точки 1 в точку 5. Этот процесс может многократно повторяться. Такая неустойчивая работа компрессора, сопровождающаяся резким периодическим колебанием давления в производительности в сети (системе).
Частота и амплитуда колебаний зависят от характеристики компрессора, объема газа в системе, свойств перекачиваемого газа и др.
Для обеспечения устойчивой работы компрессор должен работать на ниспадающей части характеристик H=f(V). Величина Vк определяется из анализа формы характеристики компрессора и системы.
При проектировании компрессора границу помпажа стремятся переместить в зону меньших подач. Это достигается путем соответствующего воздействия на геометрические характеристики проточной части. В эксплуатации зону помпажа можно уменьшить снижением частоты вращения компрессора, уменьшением аккумулирующей способности системы.
Для отстройки от границы помпажа и работы в непомпажной зоне компрессорная установка оснащается антипомпажным устройством, упрощенная схема которого показана на рис. 1.10.
Рис. 1.10. Схема антипомпажного регулирования
а) характеристики регулирования
б) схема регулирования
К – компрессор
АК – антипомпажный клапан
D – диафрагма
На нагнетательном трубопроводе включается антипомпажный регулятор, соединенный посредством сервомотора с антипомпажным клапаном (АК). В настоящее время используется антипомпажные устройства струйного типа. Когда потребление сети уменьшается до Vмин (границы помпажа), включается регулятор производительности. Разница объемов ∆ V=Vk – V мин выпускается в атмосферу или переводится на всас компрессора.
При регулировании перепуском (байпасированием) нагнетательный и всасывающий трубопроводы соединяются обводным (байпасным) трубопроводом с регулирующим клапаном.
Рис. 1.11. Регулирование байпасированием
Пример: Пусть необходимо уменьшить производительность V2 до значения V1. В компрессоре газ сжимается до давления рк2, но часть его дельта V =V2-V1 направляется по обводному трубопроводу на вход компрессора. Нагрев газа при дросселировании разности давлений рк1-рк2 воспринимается в теплообменнике, благодаря чему состояние газа на входе практически не меняется. При сжатии воздуха обычно байпас (без теплообменника) соединяется с атмосферой. Регулирование перепуском связано с завышенной затратой мощности, потому этот способ стараются не применять.
Схема байпасирования применяется также и при антипомпажном регулировании.
Рис. 1.12. Удаление от границы помпажа при открытии байпасного клапана
Как можно видеть из схемы, открытие байпасного клапана уменьшает нагрузку на нагнетатель и смещает рабочую точку в сторону увеличения расхода. Это способствует сдвижению рабочей точки от границы помпажа.
1.5. Антипомпажная защита и регулирование
Антипомпажная защита
При проектировании компрессора границу помпажа стремятся переместить в зону меньших подач. Это требует применения развитых систем защиты от помпажа.
Существующие способы защиты от помпажа можно разделить на две группы
– параметрический,
– признаковый.
Параметрические способы
Центробежные компрессоры в основном оснащаются параметрическими системами антипомпажной защиты. Несмотря на множество патентов, работа всех систем параметрической антипомпажной защиты основана на том, что газодинамическая характеристика в координатах "напор – расход" по условиям всасывания, степени повышения давления при постоянной скорости вращения и постоянном молекулярном весе газа имеет единственную точку на границе помпажа.
В основном для определения границы помпажа используется измерение расхода, реже степень повышения давления. Наилучшим местом установки измерительной диафрагмы является линия всасывания, но установка сужающего устройства на всасывании приводит к снижению КПД компрессора, поэтому изготовители компрессорного оборудования используют установку диафрагмы на нагнетании с пересчетом расхода на условия всасывания, применяют сопло Вентури, проводят определение расхода по перепаду на местных сопротивлениях, например, на конфузоре.
Требования к длинам прямых участков при монтаже сужающего устройства для антипомпажной защиты, как правило, не соблюдаются, поэтому измерение расхода производится с повышенной погрешностью. Измерение степени повышения давления может производиться с высокой точностью, но применение таких систем имеет ряд ограничений:
–максимальная степень повышения давления не всегда совпадает с границей помпажа;
–в случае попадания в помпаж регулятор вырабатывает сигнал на закрытие байпасного клапана, поэтому для надежной защиты от помпажа требуется дополнительно применять признаковый способ распознавания помпажа.
Параметрические системы антипомпажной защиты имеют ряд недостатков:
–в систему зачастую закладываются характеристики не соответствующие реальным параметрам работы;
–процессы протекают на небольших участках времени, поэтому предусматривается запас на время реакции системы;
–граница помпажа обычно определяется по расходу, – погрешность измерения расхода в зоне помпажа составляет 5-10%.
Уставку антипомпажного регулятора смещают на 6-10% в сторону большей производительности от границы помпажа. Неверное определение уставки приводит или к недостаточному запасу устойчивости, или к уменьшению эффективности использования компрессора.
Признаковый способ
Признаковый способ распознавания помпажа заключается в обнаружении особенностей поведения потока газа в компрессоре. Характеристику компрессора можно разделить на пять частей:
–максимальный расход;
–оптимальная работа;
–предсрыв;
–вращающийся срыв;
–помпаж
Системы обнаружения помпажа механические, а затем электрические на основе колебаний давления, расхода тока двигателя и т.д. начали применяться с середины прошлого века, но, несмотря на множество патентов не получили широкого распространения и применялись как дополнительная мера защиты совместно с параметрическими методами. Определение вращающегося срыва при использовании аналоговых средств не представлялось возможным так, как уровень полезного сигнала соизмерим с уровнем шумов, к которым еще добавляются внешние помехи.