Физико-химические основы синтеза и применения тонкослойных неорганических сорбентов - Бетенеков Николай 2 стр.


в растворе будет накапливаться цирконий, химические и физико-химические свойства которого кардинально отличаются от свойств стронция, а концентрация которого будет изменяться со временем (рис. 1.1.). Наступит момент, когда накопившийся цирконий станет влиять на свойства системы в целом, что невозможно не учитывать.

Рис. 1.1. Изменение состава раствора Sr-90 активностью 1 Ku/мл.

Исторически аномальное поведение микроколичеств вещества прежде всего было отмечено при изучении свойств таких элементов, как Tl, Pb, Bi, Po, Ra (членов природных радиоактивных семейств) при концентрациях 10-8 – 10-14 моль/л. Наблюдались аномалии двух видов: «исчезновение» из растворов и «неподчинение» основным закономерностям, характерным для поведения макроколичеств этих элементов в особенно в процессах межфазного распределения – сокристаллизации, соосаждения, экстракции, сорбции и других. Эти аномалии поведения микрокомпонентов необходимо учитывать не только при решении исследовательских и аналитических задач, но и при разработке технологии извлечения, концентрировании и других технологических проблем.

Бурное развитие радиохимии было связано с решением военных и энергетических задач, актуальность которых в определенные периоды времени была определяющей. Например, для разработки технологии выделения плутония из ядерного топлива в 1943 г. в распоряжении исследователей было всего 0, 5 мг Pu. Коэффициент перехода от лабораторной разработки до промышленной установки составил 1010. В условиях мирного времени подобного не сделал бы ни один здравомыслящий ученый или инженер. Одной из составляющих ядерного топливного цикла является переработка облученного ядерного топлива. Цель переработки облученного ядерного топлива может быть различной. Она может заключаться в выделении неразделившегося урана, вторичного ядерного топлива (изотопов плутония), некоторых продуктов деления, представляющих интерес. Сложность этой задачи становится очевидной, если проанализировать состав облученного ядерного топлива, приведенный в таблице 1.

Таблица 1.1.

Состав раствора, полученного при растворении 1000 кг урана с глубиной выгорания до 1000 МВт•сут/т, время выдержки – 100 сут.

Основные научные направления кафедры радиохимии связаны с физико-химией гетерогенных систем, синтезом специфических и селективных неорганических сорбентов с заранее заданными свойствами и теорией межфазного распределения растворенных веществ:

• Изучение закономерностей межфазного переноса радионуклидов из растворов различного происхождения в фазу неорганических сорбентов;

• Исследование состояния радиоактивных микрокомпонентов в водных растворах природного и техногенного происхождения.

Вклад в теорию межфазного распределения радионуклидов-микрокомпонентов сделан в основном трудами Ю. В. Егорова, Н. Д. Бетенекова, В. Д. Пузако, В. В. Кафтайлова, Е. В. Полякова и Т. А. Недобух. Эта задача в настоящее время интересует не только технологов и аналитиков, но и геохимиков, специалистов в области прикладной экологии, токсикологии и др. Приемы концентрирования и разделения веществ, находящихся в разбавленных и сложных по составу растворах, являются основными операциями современных технологий, так как именно эти процессы (концентрирование, выделение и разделение) определяют успешность обезвреживания отходов, переработки многокомпонентного (полиметаллического) сырья, технологии особо чистых веществ и материалов с точно дозированными примесями. Учеными кафедры разработан теоpетический анализ влияния истинно– и псевдоколлоидных фоpм соpбата на закономеpности статики и кинетики сорбции. С использованием методов соpбции, электpофоpеза, ультpафильтpации с пpименением ядеpных фильтpов и ультpацентpифугиpования исследованы фоpмы состояния радиоактивных микpокомпонентов в различных pаствоpах (пpесные воды, моpская вода и хлоpидно-натpиевые гидpотеpмы).

Таким образом, изучение и учет физико-химического поведения микрокомпонентов в сложных системах является не только чисто исследовательской проблемой, но и затрагивает технологические разработки, а для решения экологических задач может стать определяющим.

Состояние микрокомпонентов в водных растворах

Под термином "состояние" в радиохимии подразумевается совокупность всех форм, образованных радионуклидом в водном растворе:

а) простые акваионы – M(H2O)Nz+;

б) ионные пары или внешнесферные комплексы;

в) комплексные ионы, образованные центральным ионом (Мz+) и лигандами (Ln-), причем лиганды могут быть одинаковой или различной химической природы – {M(H2O)N-iLi}z-ni;

г) моноядерные продукты гидролиза {M(H2O)N-i(OH)i}z-i;

д) полиядерные гидроксокомплексы – {Mj(H2O)j(N-i)(OH)i}jz-i;

е) гетерополиядерные гидроксокомплексы;

ж) истинные радиоколлоиды;

з) псевдорадиоколлоиды.

Знание форм состояния радионуклидов чрезвычайно важно, так как они определяют поведение радионуклида в любых технологических операциях (сокристаллизация, соосаждение, сорбция, ионный обмен, экстракция, электролиз и т.п.). Поэтому представляют интерес расчетные методы, позволяющие на основании справочных данных получить предварительную оценку концентрации (или доли) каждой из возможных форм состояния радионуклида в растворе конкретного состава.

1.2. Ионо-дисперсное состояние микрокомпонентов в растворах. Комплексные соединения

Комплексные (координационные) соединения. Устойчивость координационных соединений. Внутрикомплексные (хелатные) соединения. Лиганды. Дентатность лиганда. Монодентатные и полидентатные лиганды. Устойчивость внутрикомплексых соединений. Размер хелатного цикла. Хелатный эффект.

К ионно-дисперсным формам относятся простые акваионы, моноядерные, полиядерные и гетрополиядерные комплексы.

Описание ионодисперсных форм обычно осуществляют с позиций образования комплексных соединений.

Комплексные соединения или, другими словами, координационные соединения – это частицы (нейтральные молекулы или ионы), которые образуются в результате присоединения к данному иону (или атому), называемому ''комплексообразователем'' (центральным атомом), нейтральных молекул или других ионов, называемых лигандами. Для комплексного соединения характерно то, что он сохраняется как самостоятельная единица даже в растворе, хотя может происходить и частичная диссоциация. Комплекс может быть нейтральной частицей или иметь положительный или отрицательный заряд в зависимости от заряда центрального атома и координированных групп – лигандов. В растворе простые ионы не существуют, они образуют с молекулами растворителя сольватные (для водных растворов – акво-) комплексы. Молекулы растворителя более или менее прочно связаны с ионами, молекулы первой сольватной оболочки расположены вокруг иона в определенном порядке. Количество и расположение молекул растворителя вокруг центрального атома определяется объемом иона, плотностью заряда на нем и пространственными условиями. Следовательно, реакцию образования комплексов в растворе можно рассматривать как реакцию обмена молекул растворителя на молекулы лигандов:

M(H20)n +L→ М(Н2О)п–1L + H20, (1.1)

М – центральный ион, L – лиганд (органический или неорганический ион или нейтральная молекула), заряды для простоты опущены.

В процессе комплексообразования молекулы растворителя, окружающие центральный ион могут последовательно замещаться ионами или молекулами лиганда, что в итоге приводит к образованию комплекса MLn, где n – число лигандов в комплексе. Это число равно координационному числу, если лиганды образуют с центральным ионом только одну связь. Координационное число зависит от природы лиганда, поэтому к приписыванию данному центральному иону одного определенного координационного числа следует относиться с осторожностью. Классический подход к определению структуры координационных соединений заключался в том, чтобы установить структуру неизвестного соединения на основе структур известных изомеров. Структуры плоского квадрата, тетраэдра и октаэдра (рис. 1.2.), приписанные соединениям, были подтверждены физико-химическими методами. Хотя наиболее часто встречаются координационные числа 6 или 4, известны соединения, в которых центральный ион имеет координационное число вплоть до 10 – 12.

Рис. 1.2. Образование комплексов различной структуры [1] .

Равновесия реакций комплексообразования

В общем случае образование комплексного соединения можно выразить следующим уравнением:

mM + nL↔MmL, (1.2)

тогда термодинамическая константа комплексообразования:

(1.3)

где aM = f[M] – активность, f – коэффициент активности, [ ] – символ концентрации. Согласно теории Дебая-Хюккеля, коэффициенты активности в разбавленных растворах в первом приближении определяются только ионной силой раствора и могут быть рассчитаны по уравнению Дэвиса [2].

При постоянной ионной силе J = const концентрационная константа β отличается от термодинамической константы βt при J = 0 на постоянную величину, поэтому

(1.4)

Если в структуре комплекса существует только один центральный атом, то он называется моноядерным, если m ≠ 1, то полиядерным. Хотя полиядерные комплексы встречаются также часто, как и моноядерные, в большинстве случаев их образованием пренебрегают, особенно при низких концентрациях.

Комплексы обычно образуются ступенчато, процесс характеризуется ступенчатыми константами комплексообразования Ki:

(1.5)

Проведя подстановки:

получаем

(1.6)

где βN– общая константа образования (устойчивости). В данном выражении N – число присоединенных лигандов, а не координационное число. Если рассматривать обратный процесс, то получаем реакцию диссоциации, которая характеризуется константой диссоциации или нестойкости k:

(1.7)

Константы нестойкости ступенчатые – обратные величины ступенчатым константам устойчивости. Общая константа нестойкости

(1.8)

Для определения констант и описания форм состояния ионов в растворе имеют большое значение соотношения между константами и аналитически измеряемыми величинами. Общая концентрация металла в растворе в виде свободного иона и комплексных частиц определяется уравнением:

(1.9)

Введя

, получаем, N – максимальное число лигандов в комплексе.

Общую концентрацию лиганда можно определить:

(1.10)

Для определения степени закомплексованности Нильс Бьеррум предложил использовать среднее координационное или лигандное число, которое при заданных концентрации лиганда и константах устойчивости комплекса характеризует глубину комплексообразования. Среднее лигандное число и дает число лигандов, связанных с одним ионом металла – комплексообразователя во всех типах комплексов, т.е

Подставив соответствующие выражения, получаем:

(1.11)

При заданных βi среднее лигандное число зависит только от концентрации лиганда и не зависит от концентрации металла в растворе (рис. 1.3). Это утверждение справедливо только для случая образования моноядерных комплексов. Если CL>>CM, то [L] ≈ CL. Когда CL<10CM, то при расчете нельзя пренебрегать связанным в комплекс лигандом.

Рис. 1.3. Изменение среднего лигандного числа в зависимости от концентрации лиганда для цианидных комплексов кадмия [1].

Еще одна величина, которая нашла широкое применение, – это мольная доля i– комплекса в растворе αi.

(1.12)

Из определения следует

. αi зависят только от концентрации лиганда и не зависят от концентрации металла в растворе (рис. 1.4).

Рис. 1.4. Доля аммиачных комплексов цинка, как функция концентрации свободного аммиака [2].

При такой концентрации лиганда, при которой один из комплексов присутствует в максимальных количествах (αi=max), соответствует числу лигандов, связанных в этом комплексе. Абсциссы точек пересечения кривых мольных долей, т.е. точек, в которых концентрации двух последовательных комплексов одинаковы, равны отрицательным логарифмам ступенчатых констант устойчивости:

(1.13)

Если ион металла образует комплексы с несколькими видами лигандов, то распределение по формам можно рассчитать аналогично:

или в общем случае

(1.14)

где К – число различных видов лигандов, участвующих в комплексообразовании (рис. 1.5).

Равновесия образования полиядерных комплексов рассмотрим в части, посвященной процессам гидролиза.

Внешнесферные и внутрисферные комплексы

Приведенные уравнения и константы характеризуют процесс образования внутрисферного комплекса в результате проявления сил близкодействия, что приводит к молекулярному контакту между ионом-комплексообразователем и лигандами. Если лиганды способны образовывать вторую и более удаленные сферы, то говорят об образовании внешнесферных комплексов. Возможность образования внутрисферного комплекса определяется напряженностью поля и особностью к поляризации, следовательно, зарядом и радиусом иона, т.е.

Назад Дальше