2. Экспоненциальный закон ослабления γ-излучения. Потеря энергии при прохождении параллельного (узкого) пучка γ-квантов через вещество происходит в соответствии с экспоненциальным законом. Изменение числа γ-квантов в зависимости от толщины поглощающего материала также подчиняется экспоненциальной зависимости. Если обозначить соответственно через Io и I числа γ-квантов, падающих на поглотитель l толщиной l, см (или d, г/см2), и проходящих через него, то
I=Io е-μγ’ l,
или
I=Io е-μγ dl ,
где μ' (см-1)– линейный, а μ (см2/г) – массовый коэффициенты ослабления γ-излучения, причем μ=μ'/ρ.
Коэффициент ослабления представляет собой сумму коэффициентов фотоэлектрического поглощения τ, комптоновского рассеяния σ и образования пар χ. Например, для линейного коэффициента ослабления можно записать:
μ' =τ'+σ'+χ' .
Зависимость этих коэффициентов от энергии γ-излучения для поглотителя из свинца показана на рис. 1.13.
Кривая ослабления γ-излучения в линейных координатах аналогична бета излучению. Конечного пробега в веществе для γ-излучения не существует, всегда имеется вероятность, что γ-квант не провзаимодействует с веществом ни по одному из рассмотренных механизмов. Поэтому проникающую способность γ-излучения характеризуют толщиной слоя половинного ослабления (l1/2 или d 1/2) или связанным с ней значением коэффициента ослабления:
μ'=0,693 / l1/2 .
Рис. 1.13. Зависимость линейных коэффициентов ослабления γ-излучения в свинце от энергии γ-излучения
1 – поглощение γ-лучей за счет комптон-эффекта; 2 – поглощение за счет фотоэффекта; 3 -γ поглощение за счет образования пар электрон – позитрон; 4 – суммарная кривая
Изучая ослабление γ-квантов в зависимости от толщины поглотителя (например, свинца), можно оценить энергию γ-излучения. Заметим, что анализ кривых ослабления не позволяет выявить близкие по энергиям γ-компоненты сложной схемы распада. Поэтому в настоящее время для идентификации радионуклидов по γ-излучению используется не метод ослабления, а более точные методы γ-спектрометрии.
1.4.5. Регистрация ионизирующего излучения
1. Общие положения
Выполнение химических исследований с использованием радионуклидов всегда включает проведение операций по регистрации их излучения. Под регистрацией излучения понимают получение качественной и количественной информации об излучении радиоактивных ядер, содержащихся в исследуемом объекте. Регистрация излучения позволяет решить ряд задач: установить присутствие радиоактивных атомов, определить тип и энергию излучения, найти содержание радиоактивных атомов в образце и т. д. Регистрацию излучения проводят при помощи соответствующих детекторов.
Основу любого метода регистрации составляет взаимодействие излучения с веществом (см. предыдущий раздел). Методы регистрации можно классифицировать в зависимости от того, какой именно эффект взаимодействия используется. Различают: а) ионизационные методы, которые основаны на ионизирующем действии излучения; б) сцинтилляционные методы, в основе которых лежит способность ряда материалов превращать энергию ядерных излучений в энергию фотонов светового излучения; в) авторадиографические методы, в которых используются химические реакции в фотоэмульсиях, протекающие под действием излучения исследуемого образца.
Кроме перечисленных существуют и другие способы регистрации излучения, пригодные для решения специальных задач.
В детектор, как правило, попадает не все излучение исследуемого радиоактивного препарата, а только какая-то его часть. Доля излучения, не зарегистрированная детектором, зависит от геометрического расположения препарата относительно детектора, поглощения излучения в самом препарате и на пути между препаратом и детектором и других причин. К тому же не все излучение, попавшее в детектор, будет обязательно зарегистрировано. Поэтому переход от показаний прибора, полученных при регистрации излучения исследуемого препарата и отнесенных к единице времени (т. е. от регистрируемой активности), к числу актов распада, происшедших в препарате за единицу времени (т. е. к абсолютной активности препарата), требует введения ряда поправочных коэффициентов. Произведение всех этих коэффициентов представляет собой коэффициент регистрации Кр (о котором уже говорилось ранее). Связь между абсолютной активностью препарата а и его регистрируемой активностью определяется формулой a = I / Kp. Точное определение коэффициента регистрации часто связано с большими трудностями. Довольно часто при выполнении работ с использованием метода радиоактивных индикаторов нет необходимости переходить от Ι к а. На практике обычно удовлетворяются значениями Ι , найденными непосредственно из показаний регистрирующего прибора. Пользоваться значениями Ι вместо соответствующих значений а можно лишь в тех случаях, если при измерении препаратов одного и того же радионуклида с абсолютными активностями а1, а2, аi, коэффициент регистрации Kp остается постоянным, т. е. справедливы соотношения ai= Ii / Kp . Измерения радиоактивности, при которых выполняется указанное условие, называют относительными.
Для практических целей определения активности значение коэффициента регистрации Kp определяют по следующей формуле:
Kp= Ii/ а,
где – Kp-имп/расп, коэффициент регистрации для исследуемого радионуклида, Ii, имп/сек – регистрируемая скорость счета эталона с активностью а, расп/сек (активность должна быть пересчитана на момент измерения).
Коэффициент регистрации в отличии от абсолютной эффективности содержит в себе данные о схеме распада и применим только для данного радионуклида.
Приближенное значение коэффициента регистрации (счетности) можно получить и не имея эталонного препарата определяемого радионуклида, если в распоряжении исследователя есть эталон другого радионуклида с похожей схемой распада (тот же тип излучения и близкие значения энергий). При этом исследуемый препарат изготовляют геометрически и технологически идентичным имеющемуся эталону-заменителю (одинаковая форма и размеры, один и тот же материал подложки и др.). В результаты измерений вносят только поправки на схему распада (если они существенны).
Иногда можно использовать эталон радионуклида, даже резко отличающегося от исследуемого по одному из важных параметров (например, по энергии излучения). При этом поступают следующим образом, с помощью эталона определяют его геометрический коэффициент (с учетом всех остальных поправок), а затем найденное значение этого коэффициента используют при определении активности исследуемого препарата в тех же самых геометрических условиях.
Тем не менее, самое надежное значение коэффициента счетности можно получить только с помощью стандартного препарата радионуклида, тождественного с определяемым.
Любой метод регистрации обеспечивает выполнение условия относительных измерений, в частности, если режим работы детектора (напряжение, температура и т. д.) правильно подобран и поддерживается в ходе измерения на постоянном уровне. Использование различных методов регистрации связано с разными затратами труда и средств, поэтому в каждом конкретном случае следует искать наиболее простой путь регистрации. Выбор наилучшего метода регистрации требует знания индивидуальных особенностей различных методов, которые обсуждаются ниже.
2. Ионизационные методы
В основе ионизационных методов регистрации лежит измерение электропроводимости вещества (в частности, газа), обусловленной его ионизацией при взаимодействии ядерных излучений со средой. Энергия, расходуемая на образование в воздухе одной пары ионов обоих знаков, постоянна для любого вида излучения и равна приблизительно 34 эВ. На основании этого можно подсчитать число пар ионов, образующихся при прохождении частицы с определенной начальной энергией. Так, например, при прохождении β-частицы с начальной энергией 1,7 МэВ образуется 1,7 • 106/34 =5 104 пар ионов.
Ионизационные детекторы обычно представляют собой баллоны, наполненные газовой смесью определенного состава. Внутри баллона находятся хорошо изолированные друг от друга металлические электроды. Такие детекторы различаются в зависимости от области напряжений, в которой они работают, поэтому следует познакомиться с особенностями регистрации излучения при разных напряжениях на электродах детектора.
Ионы, возникающие после прохождения ионизирующей частицы через внутренний объем детектора, под действием электрического поля перемещаются к электродам, обусловливая тем самым появление электрического тока в цепи детектора. Зависимость силы тока от приложенного на электроды напряжения представлена на рис. 1.14. Участок 0В графика соответствует области напряжений, в которой увеличение напряжения приводит к росту скорости перемещения ионов в межэлектродном пространстве. Вследствие этого уменьшается вероятность их рекомбинации и ток в цепи возрастает. По мере дальнейшего увеличения напряжения наступает момент (напряжение (Ub), когда все образующиеся непосредственно под действием ионизирующих частиц ионы оказываются в состоянии достичь электродов и дальнейшее увеличение напряжения от Ub до Uc не приводит к росту силы тока в цепи.
Ток, соответствующий этой области напряжений, называют током насыщения (участок ВС). Если напряжение на электродах и дальше увеличивать, то сила тока вновь начинает возрастать, причем значительно быстрее, чем на участке 0В.
Это новое возрастание сначала (при напряжениях, не намного превышающих Uc) вызвано только процессом так называемой ударной ионизации, заключающимся в том, что первично образующиеся ионы приобретают в электрическом поле детектора энергию, достаточную для осуществления при соударениях новых актов ионизации атомов и молекул. Заметим, что ионы, образовавшиеся при ударной ионизации, в свою очередь могут вызвать ионизацию нейтральных атомов и молекул.
Рис. 1.14. Зависимость тока i в ионизационном детекторе от приложенного к электродам напряжения
При дальнейшем росте напряжения соударения ионов с молекулами начинают приводить не только к ионизации, но и к возбуждению молекул. Возбужденные молекулы, возвращаясь в основное состояние, испускают кванты света. Энергия этих квантов достаточна, чтобы обусловить выход электронов с анода и катода в результате фотоэффекта. Электроны, вылетающие с анода, под действием электрического поля быстро возвращаются на анод, а электроны, покинувшие катод, перемещаются к аноду и участвуют в процессах соударения с молекулами и атомами газа, вызывая образование новых ионов. Фотоэффект имеет место не только на электродах, но и на компонентах газовой смеси. В итоге в рабочем объеме детектора образуется так называемый пространственный разряд, вследствие чего сила тока, проходящего через детектор, оказывается намного выше тока насыщения. Область CD называют областью газового усиления. Для характеристики газового усиления служит коэффициент газового усиления kгу
kгу = nобщ/nп,
где nобщ – общее число ионов, образовавшихся в детекторе под действием ядерной частицы; nп – число первичных ионов.
При достижении напряжения Ud в детекторе возбуждается самостоятельный разряд и сила тока скачкообразно возрастает. Отметим, что подавать на детектор напряжение, равное или большее, чем Ud, нельзя, так как любой детектор, в котором был возбужден самостоятельный разряд, быстро выходит из строя.
Для регистрации излучения используют две области напряжений: область UbUc, соответствующую току насыщения, и область UcUd в которой имеет место газовое усиление. Детекторы, работающие в первой области, обычно называют ионизационными камерами, во второй – счетчиками. Оба эти типа детекторов используются в различных системах регистрации ядерных излучений.
Системы регистрации могут предназначаться для регистрации либо отдельных ядерных частиц или γ-квантов (дифференциальные системы), либо для регистрации потоков ядерных излучений (интегральные системы). С точки зрения радиотехники различие между обеими системами связано с разными скоростями cтекания заряда с электродов детектора. Цепь, в которую включен ионизационный детектор, имеет эффективную емкость С и сопротивление R. При прохождении ионизационного тока накопленный на электродах заряд разряжается на сопротивлении R цепи. Время, за которое заряд на электродах уменьшается в е раз, равно произведению RC. Это произведение имеет размерность времени и называется постоянной времени. Если RC велико по сравнению со временем, проходящим между двумя последовательными попаданиями ядерных частиц в детектор, то достигается стационарный режим и вся система регистрирует наличие некоторого постоянного тока в цепи. Наоборот, если RC относительно мало, то аппаратура, соответствующим образом сконструированная, сможет фиксировать электрические импульсы от отдельных частиц. Значения R и С можно в определенных границах менять, поэтому любой ионизационный детектор пригоден для включения в схемы регистрации обоих типов.
На практике ионизационные камеры используют чаще в интегральных системах регистрации, счетчики – в дифференциальных. Причины разграничения областей применения двух типов ионизационных детекторов состоят в следующем. В случае интегральных систем регистрируемый ток должен быть прямо пропорционален числу попавших в объем детектора ядерных частиц или γ-квантов. Такая пропорциональность существует только при регистрации токов насыщения.
Обычно ионизационный ток, вызываемый прохождением одной частицы (п = 1), очень мал и для того, чтобы регистрация отдельных частиц ионизационной камерой стала возможной, его необходимо значительно усилить.
Измерение очень слабых токов представляет довольно сложную проблему, поэтому ионизационные камеры обычно включают в интегральные системы регистрации. Такие приборы (токовые ионизационные камеры) нашли широкое применение для дозиметрии γ- и β-излучений высокой проникающей способности.
Для того чтобы обеспечить возможность работы ионизационной камеры в интегральных системах, значение RC должно быть достаточно велико. С этой целью в цепь включают высокоомное сопротивление R = 1011–1012 Ом. При таких больших R даже очень малые токи, протекающие через ионизационную камеру, создают падение напряжения на сопротивлении, составляющее около 1 В, которое относительно просто зарегистрировать.
Для специальных целей применяются ионизационные камеры, работающие в дифференциальных системах (импульсные ионизационные камеры). Такие камеры используются, например; при регистрации осколочных ядер, обладающих большой энергией и высокой ионизирующей способностью, при определении энергии α-частиц (в α-спектрометрии) и в некоторых других случаях.