О вкусной и здоровой пище спортсмена. Диета в практике спорта - Борисов Анатолий 3 стр.


Большое значение имеет процентное содержание таких смесей, т. е. глюкозоэлектролитные растворы с пониженной по отношению к плазме осмолярностью способствуют увеличению скорости насыщения и наоборот. Так, прием 10 % (и менее) раствора глюкозы повышает скорость усвоения жидкости почти вдвое. Потребление 8–10 % раствора в процессе тренировки, соревнования, спортивных игр повышает функциональные возможности организма.

Приготовить напиток можно самостоятельно: 10 г (1 ч. л.) сахара, меда, соль на кончике ножа растворить в 100 мл воды. Несмотря на то, что по вкусовым качествам (несладко) такой напиток неохотно пьется спортсменом, привыкшим к сладкому, польза его очевидна.

Прием углеводных напитков на дистанции во время соревнований (где это разрешено правилами) или на тренировке во время выполнения длительных физических нагрузок абсолютно необходим для восполнения запасов энергии.

Углеводы в организме запасаются в виде длинноцепочечных соединений – гликогена. Мышечный гликоген идет только на энергопотребление мышцами, если он запасен в них; печеночный гликоген может быть расщеплен до глюкозы и высвобожден в кровь для всех целей. К 3–6 часам утра печень расходует большую часть своих запасов гликогена. Именно поэтому важен завтрак с углеводным насыщением для восполнения запасов гликогена, израсходованного в предыдущий день тренировок и в процессе ночного восстановления. Кроме того, усвоение сахаров организмом лучше утром из-за особенности функционирования инсулярного аппарата.

Прием углеводов на ночь помогает индуцировать сон за счет увеличения уровня серотонина в мозговых структурах (увеличивается приток триптофана – предшественника серотонина). Но здесь существует небольшой нюанс – углеводы подавляют эффект ночного высвобождения гормона роста.

Время потребления углеводов имеет большое значение в углеводном насыщении (наряду с приемом продуктов с высоким гликемическим индексом) по отношению к тренировочному процессу. Чем раньше после физической нагрузки начат прием, тем эффективнее процесс гликогенообразования (как при приеме фосфагенов). Потребление высокоуглеводных жидкостей и продуктов сразу же после продолжительной тренировки или соревнований увеличивает скорость накопления гликогена в мышцах и способствует быстрому восстановлению.

Во время тренировки энергетические напитки (чаще это жидкие углеводы или другие специальные напитки, обладающие повышенной энергоотдачей) рекомендуется принимать, если она длится более 90 мин. Также в обязательном порядке необходимо принимать энергетики во время утренней или вечерней тренировки в подростковом возрасте. Но не насыщенные кофеином, гуараной и т. д. В возрасте интенсивного роста организма и при значительных энерготратах возможно чрезмерное расходование пластического материала (белки, аминокислоты) на обеспечение организма энергией.

Быстрое восстановление запасов гликогена позволяет более эффективно проводить и вторую тренировку в день и полностью восстановиться к следующему дню (см. табл. 3). Так как синтез внутримышечных запасов гликогена длится от 12 до 48 ч, то при многодневных соревнованиях (больших и длительных расходах энергии) возможно внутривенное введение глюкозы или фруктозы (введение фруктозы задерживает утилизацию молочной кислоты). Здесь следует напомнить, что по условиям антидопингового контроля возможно одномоментное в/в вливание не более 50 мл. Синтезу запасов гликогена способствует прием глютамина.

Накопление гликогена в течение первых 40 мин восстановления после физической нагрузки происходит в 2 раза быстрее при одновременном потреблении углеводов и белка по сравнению с потреблением только углеводов и в 4 раза быстрее, чем после потребления углеводов в той же самой концентрации. Эта тенденция также продолжает проявляться после второго приема пищи (через 2 ч со времени начала срочного восстановительного периода).

Углеводы в жидком виде способствуют предотвращению обезвоживания, о котором нельзя забывать. Вместе с тем эффективность синтеза гликогена не зависит от потребления углеводов в жидкой или твердой форме. В жидком виде скорость утилизации глюкозы несколько увеличивается.

Чем больше запасов гликогена в мышцах перед физической нагрузкой, тем больше потенциал скоростной выносливости у спортсмена. При интенсивной соревновательной нагрузке больше 90–120 минут запасы гликогена в мышцах и печени резко снижаются. Когда они падают до критически низкого уровня (момент гликогенного истощения), спортсмен не в состоянии поддерживать высокую скорость на дистанции. Запасы гликогена можно увеличить, применив метод углеводного насыщения, или углеводной загрузки

Американские спортивные диетологи рекомендуют применять методики 6, 3, 1-дневного режима углеводного насыщения.

В таблице 4 представлен шестидневный режим тренировок и питания, используемый для углеводного насыщения. В первый день, за шесть дней до соревнований, проводят интенсивную тренировку продолжительностью 90 минут на уровне 70 % от максимального потребления кислорода (МПК). В следующие два дня продолжительность занятий снижают до 40 минут. За три дня до соревнований продолжительность занятий до 20 минут. За день до соревнований – отдых.

Очень важно снизить объем и интенсивность тренировок за три дня до соревнований. Три заключительных дня, во время которых снижается объем тренировок и потребляется высокоуглеводная диета, являются по-настоящему «загрузочной» фазой метода.

При трехдневной методике углеводной загрузки – за три дня до старта проводят интенсивную полуторачасовую тренировку. Далее два дня отдых с высокоуглеводной диетой (10 г углеводов на кг/МТ в день).

Однодневный режим углеводного насыщения рекомендуется использовать в тех случаях, когда нарушен процесс подготовки к соревнованиям.

Утром за день до соревнований пропускается завтрак и проводится 5-минутная разминка.

Затем упражнения с самой высокой интенсивностью в течение 2,5–3 минут. Прием углеводов не позже, чем через 20 минут после завершения упражнения.

Следующие 24 часа необходимо отдыхать и потребить 10 г углеводов на кг/МТ.

Благодаря методикам углеводного насыщения можно увеличить запасы гликогена в мышцах на 50-100 %.

Необходимо, чтобы нагрузка (истощающая нагрузка), направленная на снижение запасов гликогена, была специфичной для конкретного вида спорта, т. е. направленной на работу мышц максимально участвующих в выполнении специфических локомоций.

Метод углеводного насыщения целесообразно использовать только перед соревнованиями, длящимися более 90 минут. Углеводное насыщение позволяет поддерживать высокую интенсивность упражнения более длительное время, не влияя на темп в первый час работы, и позволяет дольше поддерживать скорость.

В регуляции углеводного обмена центральное место занимает контроль уровня в крови глюкозы – источника углеводного питания всех клеток организма.

При повышенном потреблении углеводов можно порекомендовать дополнительный прием тиамина (витамин В1) и аскорбиновой кислоты (витамин С), способствующих накоплению гликогена во внутренних органах, в частности в печени, мышцах.

Прежде чем воспользоваться методикой углеводного насыщения, необходимо проконсультироваться с врачом. Необходимо помнить, что существует опасность манифестации сахарного диабета у лиц с отягощенным анамнезом.

Лактат (молочная кислота) ‒ это уникальный продукт метаболизма, образующийся в мышцах в процессе нагрузок. Он отражает уровень тренированности организма. В состоянии покоя уровень молочной кислоты составляет 1 ммоль/л. Во время физической нагрузки мышцы используют глюкозу в качестве источника энергии. Молекула глюкозы преобразуется в молекулу пировиноградной кислоты, которая в сочетании с кислородом служит источником энергии в форме АТФ.

В условиях недостатка кислорода пировиноградная кислота расщепляется до молочной кислоты и ионы водорода, которые повышают уровень кислотности в мышцах.

Поначалу организм, имея буферные системы, способен противодействовать этому процессу, предотвращая накопление молочной кислоты и ионов водорода и быстрое наступление усталости. Однако по мере увеличения интенсивности нагрузки сопротивляемость организма кислотности падает, в результате чего происходит повышение концентрации молочной кислоты в крови.

Момент, называемый лактатным порогом, наступает, когда уровень молочной кислоты в крови достигает 4 ммоль/л, и появляется прекрасно знакомая всем боль в мышцах и усталость. При нарастании количества молочной кислоты в крови увеличивается боль и жжение в работающих мышцах (индивидуально у каждого спортсмена), общая усталость. Хотя повышение кислотности обусловлено именно увеличением числа ионов водорода, порог называется лактатным, поскольку в ходе теста на нагрузку измеряется уровень лактата. С уровнем лактата в 4 ммоль/л связано понятие ПАНО (порог анаэробного обмена), когда начинает реализовываться переход на иной, ограниченный потреблением кислорода, путь энергообеспечения.

Чаще всего при тренировке на выносливость именно «на пороге» задается подходящая максимальная скорость, которую упражняющиеся спортсмены могут поддерживать длительное время. Тренировки, специально применяемые для повышения лактатного порога, могут значительно улучшить скорость прохождения дистанции. Он также считается одним из лучших показателей выносливости. Как правило спортсмены, чей лактатный порог проявляется на более высокой скорости, будут быстрее в соревновании на выносливость, поскольку для них характерен более высокий уровень толерантности к накоплению ионов водорода и отсрочка усталости. Следовательно, тренировки «на пороге» и незначительно ниже практически всегда улучшают результативность в циклических видах спорта.

Энергизаторы

Яблочная кислота – промежуточный продукт цикла трикарбоновых кислот (ЦТК), источник энергии, участвует в тканевом дыхании. Пищевой источник – в основном растительные продукты (например яблоки, малина и т. д.)

Лимонная кислота – природное вещество, промежуточный продукт ЦТК (он же – цикл лимонной кислоты, цикл Кребса), источник энергии. Применяется в виде лимонной кислоты промышленного производства или в виде сока, мякоти свежего лимона с сахаром, медом перед стартами; в качестве восстанавливающего средства (с напитками) после физической нагрузки.

Свежая и замороженная ягода малины содержит лимонную и яблочную кислоты. Аналогичным действием обладает кетоглутаровая кислота (важнейший метаболит ЦТК).

Янтарная кислота. Также промежуточный продукт ЦТК. Применяется при экстремальных физических, психоэмоциональных, тренировочных и соревновательных нагрузках, а также в восстановительном периоде.

Янтарная кислота обладает исключительно высокой мощностью поставки электронов и протонов в митохондрии. В результате реализуется антигипоксантный и антиоксидантный механизм действия на уровне организма. Антиоксидантное действие проявляется также в уменьшении продуктов перекисного окисления (ПОЛ) и активации ферментов антиоксидантной защиты. Подобное действие объясняется ускорением восстановления убихинона (части его – коэнзима Q10) мощным потоком электронов от янтарной кислоты.

При использовании низких доз (50 мг/сут) ведущим механизмом может служить активация образования и действия адреналина и норадреналина.

Постоянные курсы приема, которые мягко поддерживают регуляторные механизмы, необходимо проводить на основе фармакологических препаратов в дозе 50–100 мг в день, при этом проводить в виде прерывистых приемов – несколько дней прием, несколько дней перерыв. Возможны следующие схемы: 5 дней прием – 2 дня перерыв; 7 дней прием – 3 дня перерыв.

Необходимо стремиться подобрать индивидуальную пороговую дозу для уравновешивания процессов активизации и восстановления.

Следует иметь в виду «сигнальное» действие янтарной кислоты, поэтому подбирается доза с ориентировкой на субъективные критерии оценки состояния – настроение, степень утомления, полноценность сна, бодрое пробуждение, легкую переносимость ограничения приема пищи.

В случаях применения янтарной кислоты в острых ситуациях разовая доза должна быть увеличена до 1–2 г. Не рекомендуется прием препаратов в вечернее время.

Ягоды и фрукты в свежем и замороженном виде в периоды наиболее интенсивных тренировок включаются в рацион питания спортсмена ежедневно.

Регуляторы липидного обмена

Регуляция липидного обмена имеет особое значение в циклических видах спорта, направленных на преимущественное развитие выносливости.

Липиды весьма важны для организма и являются одним из основных источников энергии при длительной работе, поскольку на единицу объема они содержат вдвое большее количество энергии, чем углеводы. В процессе усвоения пищевые жиры должны быть модифицированы в своей структуре, транспортированы в «депо» и далее в места их использования. Липиды поставляются в основном из тонкой кишки.

Липиды – группа низкомолекулярных веществ, нерастворимых в воде.

Различают три основных класса липидов:

– холестерин;

– триглицериды;

– фосфолипиды.

Вследствие нерастворимости в воде все липиды связаны с белками плазмы: жирные кислоты с альбуминами; фосфолипиды, холестерин с глобулинами. Комплексы липидов и белков называются липопротеидами

Результаты исследований крови на холестерин, триглицериды и липопротеиды должны рассматриваться в комплексе. Наибольшее клиническое значение имеет определение холестерина.

Холестерин (ХС) – незаменимый компонент всех клеток, входит в состав клеточной мембраны и по химическому строению является вторичным одноатомным циклическим спиртом.

Именно холестерин придает клеточным оболочкам необходимую прочность. Структура молекул холестерина такова, что они могут встраиваться между углеводородными цепочками жирных кислот клеточных мембран и «цементировать» липопротеиновую пленку клеточных оболочек.

Среди разных клеток наиболее прочные – необновляемые оболочки эритроцитов. Так как к прочности оболочки эритроцитов предъявляются повышенные требования, она содержат 23 % ХС, что больше, чем нужно оболочкам других клеток.

В оболочках клеток печени содержание ХС составляет около 17 %.

В мембранах внутриклеточных структур, например митохондрий, содержание ХС не превышает 3 %.

Миелиновое многослойное покрытие нервных волокон, выполняющее изоляционные функции, на 22 % состоит из ХС.

В составе белого вещества мозга содержится 14 %, в составе серого – 6 % ХС.

Из холестерина в печени образуются соли желчных кислот, без которых невозможно переваривание жиров.

В половых железах ХС преобразуется в стероидные гормоны (тестостерон и прогестерон), имеющие близкую с ним структуру молекул.

В надпочечниках его производным является гормон кортизол.

В женских яичниках из ХС образуется эстрадиол.

ХС важен для клеток почек, селезенки и для функций костного мозга.

Он также участвует в образования витамина D в коже под влиянием солнечного света.

В норме содержание общего ХС в плазме крови здоровых людей колеблется от 3,60 до 6,70 ммоль/л (меньше 200 мг/дл). Содержание холестерина (общего), определенного по реакции Либермана-Будхарда, – 3,00-6,20 ммоль/л. Рекомендованные для оценки значения – меньше 5,20; пограничные – 5,20-6,50; повышенные – больше 6,50 ммоль/л.

У мужчин содержание холестерина выше, чем у женщин. Уровень холестерина у здоровых людей может колебаться в зависимости от возраста, физической нагрузки, умственного напряжения и даже времени года.

Свободные жирные кислоты (СЖК) – структурные компоненты липидов. Их уровень отражает скорость липолиза триглицеридов в печени и жировых депо.

Назад Дальше