В 2002 году, когда я увязла в собственноручно выбранной теме диссертацииварианте гипотезы 1920-х годов о дополнительных измерениях, научный руководитель убедил меня, что лучше переключиться на ее современную инкарнацию. И поэтому я тоже написала несколько статей о проверке существования дополнительных измерений на Большом адронном коллайдере. Однако коллайдер не регистрировал ничего, что говорило бы в пользу этих дополнительных измерений. Я начала сомневаться в аргументах, основанных на понятии естественности. Нима Аркани-Хамед перешел от больших дополнительных измерений к SUSY, и сейчас он профессор физики в Институте перспективных исследований в Принстоне.
Я мысленно делаю заметку: надо поговорить с Нимой.
«Конечно, с ним гораздо сложнее связаться, чем со мной. Вряд ли он так легко отвечает по электронной почте, говорит мне Михаэль. Он заправляет всей областью физики элементарных частиц в США. И считает, что для того, чтобы подвергнуть проверке естественность, нам нужен коллайдер, способный достичь 100 ТэВ. Может, китайцы построят ему коллайдер, кто знает».
По мере того как становится все очевиднее, что Большой адронный коллайдер не даст нам ожидаемых доказательств более красивых законов природы, специалисты по физике элементарных частиц в очередной раз перекладывают свои надежды на следующий, еще больший коллайдер. Нимаодин из главных агитаторов в поддержку строительства нового кольцевого ускорителя частиц в Китае.
Но независимо от того, что еще можно будет открыть на более высоких энергиях, тот факт, что Большой адронный коллайдер до сих пор не нашел никаких новых элементарных частиц, означает, что верная теория, по стандартам физиков, неестественна. Фактически мы загнали себя в оксюморонную ситуацию, когда, согласно нашим собственным критериям красоты, сама природа оказывается неестественной.
«Обеспокоен ли я? Не знаю. Я сбит с толку, признается Михаэль. Я действительно в замешательстве. До Большого адронного коллайдера я думал, что-то должно случиться. Но теперь? Я обескуражен». Звучит знакомо.
ВКРАТЦЕ
Физики используют много математики и по-настоящему гордятся тем, что она так хорошо работает.
Но физикане математика: разработка теорий требует данных для контроля.
В некоторых областях физики новых данных не было уже много лет.
В отсутствие экспериментов, направляющих исследование, теоретики прибегают к эстетическим критериям.
И оказываются сбиты с толку, если это не срабатывает.
Глава 2Как прекрасен мир
В которой я читаю много книг об умерших людях и обнаруживаю, что все любят красивые идеи, но красивые идеи иногда работают плохо. На конференции я начинаю волноваться, что физики вот-вот отбросят научный метод.
Откуда мы пришли
В школе я ненавидела историю, но с тех пор осознала целесообразность цитирования умерших людей для обоснования своих суждений. Я даже не притязаю на то, чтобы дать вам экскурс в историю роли красоты в науке, поскольку на самом деле я больше интересуюсь будущим, чем прошлым, и к тому же другие этим уже занимались 9. Однако, если мы хотим увидеть, как физика изменилась, мне нужно рассказать вам, какой она была.
До конца XIX века ученым было довольно привычно считать красоту природы за признак божественности. Хотя они искалии находилиобъяснения, которые прежде были в ведении Церкви, неизъяснимая гармония, раскрываемая законами природы, обнадеживала верующих в том, что наука не представляет риска для сверхъестественного.
Примерно на рубеже веков, когда наука отделилась от религии и стала более профессионализированной, ее приверженцы перестали приписывать красоту законов природы божественному влиянию. Они изумлялись благозвучию, царящему в законах, что управляют Вселенной, но вопрос интерпретации оставляли открытым или по меньшей мере отмечали собственные верования как личное мнение.
В XX веке эстетическая привлекательность трансформировалась из приятного бонуса научных теорий в главного советчика при их построении, пока в конце концов эстетические принципы не переросли в математический критерий. Сегодня мы больше не раздумываем над аргументами о красотеих ненаучное происхождение «затерялось в математике».
* * *
Среди первых ученых, сформулировавших количественные законы природы, был немецкий математик и астроном Иоганн Кеплер (15711630), работавший под сильным влиянием религиозных убеждений. У Кеплера была модель Солнечной системы, в которой известные тогда планетыМеркурий, Венера, Земля, Марс, Юпитер и Сатурнвращались по круговым орбитам вокруг Солнца. Радиусы орбит определялись правильными многогранникамиплатоновыми телами, вставленными друг в друга, и полученные таким образом расстояния между планетами хорошо согласовывались с наблюдениями. Идея была привлекательной. Кеплер считал, что «совершеннейший из строителей с необходимостью должен был создать творение, обладавшее безупречной красотой».
Благодаря таблицам, фиксировавшим точные положения планет, Кеплер позднее убедился, что его модель неверна, и сделал вывод, что планеты движутся вокруг Солнца по эллиптическим орбитам, а не круговым. Его новая идея тут же была встречена неодобрениемона не соответствовала эстетическому стандарту того времени.
В частности, Кеплера критиковал Галилео Галилей (15641642), веривший, что «только круговое движение естественно подобает естественным телам, составляющим Вселенную и приведенным в наилучшее расположение»10. Другой астроном, Давид Фабрициус (15641617), возмущался: «Своими эллипсами вы уничтожили кругообразность и равномерность движений, что представляется мне тем нелепее, чем больше я об этом думаю» Фабрициус, как и многие в то время, предпочитал корректировать орбиты планет «эпициклами», то есть круговыми движениями меньшего радиуса вокруг круговых же орбит. «Если бы вы только могли сохранить идеальную круговую орбиту и обосновать свою эллиптическую орбиту другими небольшими эпициклами, писал Фабрициус Кеплеру, было бы намного лучше»11.
Но Кеплер был прав. Планеты действительно движутся вокруг Солнца по эллипсам.
После того как объективные данные вынудили его отказаться от безупречных многогранников, Кеплер, в более позднем возрасте, пришел к убеждению, что планеты при движении рождают музыку. В своем трактате «Гармония мира», изданном в 1619 году, он вывел, как звучит каждая из планет, и заключил, что «Земля поет ми-фа-ми». Это была не лучшая его работа. Однако кеплеровский анализ планетных орбит заложил основы для последующих исследований Исаака Ньютона (16431727), первого ученого, который строго использовал математику.
Ньютон верил в существование Бога, чье влияние видел в законах, которым подчиняется природа. В 1726 году он написал: «Такое изящнейшее соединение Солнца, планет и комет не могло произойти иначе, как по намерению и по власти могущественного и премудрого существа»12. С момента их открытия ньютоновские законы движения и тяготения были радикально пересмотрены, но в качестве приближений остаются действующими и сегодня.
Ньютон и его современники без раздумий совмещали религию и наукутогда это было общепринятой практикой. Вероятно, особенно к тому был склонен Готфрид Вильгельм Лейбниц (16461716), разработавший дифференциальное и интегральное исчисление примерно в то же время, что и Ньютон, но независимо от него. Лейбниц верил, что мир, который мы населяем, «наилучший из всех возможных миров», а все существующее зло необходимо. «Каждая вновь обретенная истина, каждый опыт или теоремаэто новое зеркало, в котором отражается красота Бога»13. Лейбниц считал, что несовершенство мира «основывается только на том, что мы слишком мало знаем всеобщую гармонию Вселенной и скрытые основания деятельности Бога»14. Иными словами, согласно Лейбницу, ужасное ужасно, поскольку мы не понимаем, что есть красота.
Аргумент Лейбница, как любят рассуждать философы и теологи, бесполезен без определения, что вообще означает «наилучший». Но сама идея, что наша Вселенная оптимальна в некотором смысле, закрепилась в науке и пробилась сквозь века. Как только она была выражена математически, она выросла в гиганта, на чьих плечах стоят все сегодняшние физические теории. Современные теории отличаются лишь тем, как они требуют от системы «наилучшего» поведения. Общая теория относительности Эйнштейна, например, может быть выведена из требования, чтобы искривление пространства-времени было как можно меньшим. Подобные методы существуют и для других взаимодействий. И до сих пор физики стараются найти всеобъемлющий принцип, в соответствии с которым наша Вселенная «наилучшая», к этой проблеме мы вернемся позже.
Как мы сюда попали
По мере того как проходили столетия и математика становилась все эффективнее, отсылки к Богу в физике потихоньку сходили на нет или вплетались в сами законы природы. В конце XIX века Макс Планк (18581947) верил, что «святость непостижимого Божества как бы придает святость постижимым символам». Затем, когда XIX век перетек в XX, красота постепенно трансформировалась в руководящий принцип физиков-теоретиков, закристаллизовавшийся с развитием Стандартной модели.
Герман Вейль (18851955), математик, сделавший важный вклад в физику, даже и не думал оправдываться за свои не очень-то научные методы: «В своей работе я всегда пытаюсь объединить истину с красотой, но, когда мне приходилось выбирать одно или другое, я обычно выбирал красоту»15. Астрофизик Эдвард Артур Милн (18961950), авторитетный ученый в период разработки общей теории относительности, считал красоту «дорогой к знанию, а точнее единственным знанием, которым стоит обладать». В своем выступлении 1922 года в Клубе естественных наук Кембриджского университета он выражал недовольство изобилием неприглядных исследований:
Достаточно просмотреть подшивки старых номеров научных журналов, скажем, за последние пятьдесят лет, чтобы наткнуться на десятки статей, которые никак не обогатили научное знание, да никогда и не могли, являясь лишь грибком на стволе древа науки и, как грибок, постоянно возникая вновь при попытке уничтожения. <> [Но если статья] возбуждает в нас эмоции, которые ассоциируются с красотой, никакие дальнейшие подтверждения не требуются; это не грибок, а цветок; это назначение науки, окончание работы, в которой наука достигла своей высшей цели. Неприглядные статьивот они-то требуют подтверждения 16.
Поль Дирак (19021984), нобелевский лауреат, в чью честь названо уравнение, пошел еще на шаг дальше и выдал инструкции: «Исследователь в своих усилиях выразить фундаментальные законы природы в математическом виде должен главным образом стремиться к математической красоте»17. В другой раз, когда Дирака попросили кратко сформулировать свою философию физики, он подошел к доске и написал: «ФИЗИЧЕСКИЕ ЗАКОНЫ ДОЛЖНЫ ОБЛАДАТЬ МАТЕМАТИЧЕСКОЙ КРАСОТОЙ»18. Историк Хельге Крах завершил биографию Дирака следующим наблюдением: «После 1935 года [ему], как правило, не удавалось достигать физических результатов непреходящей ценности. Не будет неуместным заметить, что принцип математической красоты направлял его мышление только в течение более позднего периода»19.
Альберт Эйнштейн (18791955), вообще не нуждающийся в представлении, довел себя до состояния, в котором верил, будто мышление само по себе способно раскрывать законы природы: «Я убежден, что посредством чисто математических конструкций мы можем найти те понятия и закономерные связи между ними, которые дадут нам ключ к пониманию явлений природы. <> Поэтому я считаю в известном смысле оправданной веру древних в то, что чистое мышление в состоянии постигнуть реальность»20. Справедливости ради отметим, что ученый в иных случаях все же подчеркивал необходимость наблюдений.
Жюль Анри Пуанкаре (18541912), внесший большой вклад как в математику, так и в физику, но наиболее известный, пожалуй, благодаря своему открытию детерминированного хаоса, восхвалял практическое применение красоты: «Мы видим, таким образом, что поиски прекрасного приводят нас к тому же выбору, что и поиски полезного»21 Пуанкаре считал «экономию мышления» (Denkökonomie термин, введенный Эрнстом Махом) «источником как красоты, так и практической пользы». Человеческое чувство прекрасного, утверждал он, «играет роль тонкого критерия», помогающего исследователю разработать хорошую теорию, и «эта гармония одновременно удовлетворяет нашим эстетическим потребностям и служит подспорьем для ума, который она поддерживает и которым руководит»22.
Да и Вернер Гейзенберг (19011976), один из основателей квантовой механики, смело верил, что красота владеет истиной: «Когда сама природа подсказывает математические формы большой красоты и простоты то поневоле начинаешь верить, что они истинны, то есть что они выражают реальные черты природы»23. Как вспоминает его жена:
Однажды лунной ночью мы шли по горе Хайнберг, и он был совершенно зачарован своими мысленными образами, пытаясь растолковать мне свое новое открытие. Он говорил о чуде симметрии как прообраза творения, о гармонии, о красоте простоты и о ее скрытой сути 24.
Опасайтесь прогулок под луной с физиками-теоретикамииногда восторженность берет над нами верх.
Из чего мы сделаны
В мою бытность подростком, в 1980-е годы, не много было научно-популярных книг о современной теоретической физике или, не дай бог, математике. Биографии умерших людейвот где приходилось искать. Просматривая книги в библиотеке, я воображала себя физиком-теоретиком, который пыхтит трубкой и думает великие думы, устроившись в кожаном кресле и рассеянно поглаживая бороду. Что-то в этой картинке казалось мне неправильным. Но идея, что математика плюс мышление способны раскрыть тайны природы, произвела на меня неизгладимое впечатление. Если это навык, которому можно выучиться, я хотела этому выучиться.
Одной из немногих научно-популярных книг, освещавших современную физику, в 1980-х годах была «Пугающая симметрия» Энтони Зи 25. Тогда и до сих пор профессор Калифорнийского университета в Санта-Барбаре, он писал: «Мои коллеги и я, мы интеллектуальные преемники Альберта Эйнштейна, нам приятно думать, что мы тоже ищем красоту». И Зи изложил программу: «В этом веке физики стали крайне дерзки. <> Им уже мало просто объяснить то или другое явление, они преисполнились веры, что Природе внутренне присуща прекрасная простота».
Они не только «преисполнились веры» в красоту, но и изыскали способ выразить свою веру в математической форме. Как писал Зи, «физики выработали понятие симметрии как объективного критерия для оценки устройства Природы. Когда есть две теории, физики чувствуют, что более симметричная, как правило, является и более красивой. В глазах физика красота подразумевает симметрию».
* * *
Для физика симметрияэто организующий принцип, избавляющий от ненужного повторения. Любой тип регулярности, схожести или порядка может быть математически запечатлен как выражение симметрии. Наличие симметрии всегда изобличает избыточность и допускает упрощение. Следовательно, симметрии объясняют больше с меньшими затратами.
Например, вместо того чтобы объяснять вам, что небо чистое на западе, на востоке, на севере, на юге, на юго-западе и так далее, я просто могу сказать, что оно чистое в любом направлении. Эта независимость от направления есть вращательная симметрия, благодаря которой достаточно описать, как система выглядит в одном направлении, после чего добавить, что она такая же и во всех других. Выгодаменьшее количество слов или, как в наших теориях, меньшее число уравнений.
Симметрии, с которыми имеют дело физики, представляют собой более абстрактные версии этого простого примеравроде вращений относительно нескольких осей во внутренних математических пространствах. Но все они работают одинаково: найдите преобразование, относительно которого законы природы остаются инвариантными, и вы нашли симметрию. Подобным преобразованием симметрии может быть что угодно, для чего вы можете записать четкую процедуру, сдвиг, отражение, поворот или любая другая операция, какую вы только можете придумать. Если эта операция не меняет законов природывы нашли симметрию. С ней вы экономите усилия, которые необходимо было бы затратить, чтобы объяснить, к каким изменениям ведет эта операция: вместо этого вы просто констатируете, что изменений нет. Это и есть «экономия мышления» Маха.
В физике мы используем много разных типов симметрии, но у них у всех есть одна общая черта: симметрияочень сильный объединяющий принцип, поскольку объясняет, как вещи, некогда казавшиеся очень разными, на самом деле, связанные преобразованием симметрии, составляют одно целое. Часто, однако, непросто найти правильную симметрию, чтобы упростить большие объемы данных.