Математика для гуманитариев: живые лекции - Алексей Владимирович Савватеев 3 стр.


В принципе, на этом месте я мог бы сказать «остальное проверь­те сами», потому что в других случаях передвижения пустой фиш­ки происходит ровно тот же самый эффект. Но давайте для акку­ратности проверим что-нибудь еще. Например, вверх могло пойти число 14 (вместо того, чтобы опустить вниз число 8) (см. рис. 20).

Что произойдет, где начались изменения? Только в нижних двух строках. Было 1, 2, 3, 4, 8, 7, 6, 5, а потом вместо 9, 10, 11, 14, 12, 15, 13 мы увидели 9, 10, 11, 14, 12, 15, 13. Ничего вообще не изменилось.

Давайте теперь представим себе внутреннюю пустую фишку. Скажем, если в позиции на рис. 18 клеточку 11 сдвинули к краю, а 7 сдвинули вниз (рис. 21):

Выпишем змейку до того, как подвинули 7:

1, 2, 3, 4, (8, 7, 6, 5, 9, 10, 11), 14, 12, 15, 13.

Теперь я двигаю 7 вниз и получаю вот такой фрагмент змейки:

1, 2, 3, 4, 8, 6, 5, 9, 10, 7, 11 ...

Выделяю в змейке группу, которая менялась.

Было: 1, 2, 3, 4, 8, (7, 6, 5, 9, 10), 11, 14, 12, 15, 13. Стало: 1, 2, 3, 4, 8, (6, 5, 9, 10, 7), 11, 14, 12, 15, 13.

6, 5, 9, 10 переехали на шаг левее, а 7 через них перепрыгнула. Сколько будет изменений? Ровно 4. Пары опять поменялись. Пра­вильные стали неправильными, и наоборот. Опять каждый раз мы прибавляем или отнимаем единицу. И так 4 раза. А 4 ведьчетное число, вот незадача. Опять результат меняется на четное число.

Что мы можем еще сделать? Мы могли вместо 7 подвинуть 12 (рис. 22). Тогда 12 прыгнет за пару (11,14). Изменятся ровно две пары.

Слушатель: То есть нечетное число поменяться не может.

А.С.: Ни при каких условиях. Мы уже знаем, что движение по горизонталибессмысленно. Получится та же самая змей­ка. Если мы движемся сверху вниз, то количество неправильных пар меняется либо на 2, либо на 4, либо на 6, либо ничего не ме­няется. Можно честно перебрать все возможные переходы снизу вверх. Можно просто понять, что никаких других вариантов, кро­ме четных, нет. То есть в пятнашку выиграть нельзя, потому что в стандартной исходной позиции количество неправильных пар 8, и изменить его можно только на четное число. А в требуемой по­зиции имеется 9 неправильных пар.

Слушатель: Из любой ли позиции выиграть невозможно?

А.С.: Почему? На самом деле из половины всех исходных пози­ций. Из половины невозможно, из половины возможно. Потому что в «высокой» математике учат, что половина последовательностей имеет четное число неправильных пар, а половинанечетное4. Поэтому половина вариантов будет собираться в стандартную ис­ходную позицию. Если пятнашки как угодно перемешать, вывалив из коробки и затем вставив обратно как придется, то перестанов­кой фишек всегда можно прийти либо к случаю «13, 14, 15», либо к случаю «13, 15, 14».

Чтобы понять, можно ли привести фишки в исходную позицию, нужно посчитать количество неправильных пар в змейке, соответ­ствующей изучаемой исходной позиции. Если оно нечетноепри­вести к исходной позиции можно. Если четноето нельзя.

Слушатель: Какие числа можно поменять местами?

Другой слушатель: Например, 1 и 3 можно поменять?

А.С.: Если я меняю 1 и 3 местами (было 1, 2, 3,стало 3, 2, 1), то как изменилась четность? Было отсутствие беспорядков (то есть 0), стало три беспорядка. Четность, стало быть, изменилась. Так что поменять в игре «пятнадцать» 1 и 3 местами, сохраняя остальные фишки на своих местах, тоже невозможно. Ваши вопро­сы относятся к теории групп, основе современной алгебры. Что и как можно поменять, чтобы четность меняласьэтот вопрос напрямую к теории групп5. Почему ровно половина позиций име­ет четное количество беспорядков? Это тоже связано с некоторым фактом из теории групп. Сейчас я продолжу развивать эту тему. Рассмотрим «кубик Рубика». Венгерский инженер Рубик достойно продолжил дело, начатое Сэмом Лойдом.

Давайте разберем этот кубик и соберем его обратно.

Слушатель: По-моему, есть даже какие-то соревнования на этот счет.

А.С.: На соревнованиях надо собрать тот, который теоретиче­ски возможно собрать. Под словом «разобрать» я понимаю более радикальную операцию: «разодрать».

Как только мне купили кубик Рубика, я сразу его разодрал. Потому что мне было интересно, любую ли позицию можно при­вести к исходной. Мне было это настолько долго интересно, что на мехмате МГУ я решил соответствующую задачку в качестве зачета. Возможно (если мне не изменяет память) 12 разных рас­положений, не переводящихся друг в друга. В пятнашках2, а для кубика Рубика12 ситуаций. Это тоже следует из теории групп (по которой я и сдавал зачет).

Если перевернуть угловой кубик в кубике Рубика путем прину­дительного «раздирания» и восстановления его формыего не­льзя будет собрать. Если перевернуть центральный кубичек в ре­бретоже нельзя. Если поменять местами два кубика малой «диагонали» любой граниопять не получится. Эти изменения и все их сочетания задают набор различных позиций кубика Ру­бика, которые нельзя собрать. Однако этотрудная задача.

А теперь поговорим про мяч (рис. 3). То есть, как ни странно, снова про математику.

Математика состоит из двух важных составляющих: что такое число, и что такое доказательство. Моя старшая дочка не могла в свое время решить задачу: есть 3 апельсина и 2 яблока, сколько всего фруктов? Она совершенно не понимала, как можно сложить яблоки с апельсинами. Это же совершенно про разное. Мне кажется, что это типичное гуманитарное мышление. Че­ловек фокусируется на содержании объекта и не может от него уйти. А вот старший сын решал эту задачу, когда ему было два с половиной года. Я ему говорил: «У тебя было 3 грузовика и 2 лег­ковушки. .. »«Ой, пап, давай просто 3 + 2,зачем, всё это... ерунда... Говори три и два, и будем складывать». Ведь что такое число? Числоэто ум,ен,и,е абстрагироваться от, объекта. Гово­рят, в каких-то таежных культурах, где-то далеко на воет,оке Сибири, имеются до сих пор разные числительные для обозначе­ния, например, количества белых медведей и количества деревьев. У них формализация числа 5 как выражающего общность пяти медведей и пяти сосен еще не произошла. На осознание того, что у 5 медведей и 5 сосен есть общее, человечество потратило мно­го тысячелетий. И в тот м,ом,ен,т,, когда это осознание настало, началась математика. А на память об этом процессе в русском языке до сих пор говорят «сорок» вместо «четырьдесят», хотя раньше можно было сказать «сорок собольих шкурок», но не «со­рок деревьев».

А теперь рассмотрим поближе футбольный мяч. Он состоит из шестиугольников и пятиугольников: двадцати шестиугольников и двенадцати пятиугольников.

Зачем? Почему так сложно? Вот вы, допустим, шьете футболь­ные мячи, чем вам не угодили просто шестиугольники? Взяли, сшили их по краям. Плоскость, например, отлично замощается ше­стиугольниками .

Слушатель: Но они, может быть, в мяч не сложатся.

А.С.: Давайте попробуем сложить огромный мяч. Возьмите 200. 300 шестиугольников. Плоек ость-то элементарно замощается? Вот так. как я нарисовал. Пчелиные соты (рис. 23).

Слушатель: Они на стыках но будут совпадать.

А.С.: Ну тут-то. на плоскости, вроде всё совпадает. А потом взял, свернул очень большой кусок плоскости и получил мяч.

Слушатель: Не остается места для того, чтобы правильно со­гнуть.

А.С.: Я даже не знаю, как выразить простым языком Ваше пра­вильное интуитивное замечание. Но математическая теория этого вопроса неумолима. Из шестиугольников нельзя собрать поверх­ность шара. Вообще, никак, никаким способом даже если их нарисовать на поверхности шара в слегка искривленном виде6

'edels/liexaspliere/. Обратите внимание па дату публикации :-))))·.

Слушатель: А из пятиугольников?

А.С.: Сейчас мы проясним ситуацию, связанную с пятиуголь­никами. Во-первых, давайте договоримся о том. что сшивать надо так. чтобы в каждой вершине сходилось три образующих поверх­ность мяча многоугольника. Будем называть такую сшивку регу­лярной. Сразу скажу, что никакой, регулярной ли. не регулярной.

никакой сшивкой из шестиугольников нельзя сшить футбольный мяч. Но давайте сейчас рассмотрим подробно регулярные сшивки. Возьмем всевозможные футбольные мячи, любого размера, кото­рые составлены из пятиугольников и шестиугольников.

Неожиданная теорема:

Если поверхность шара «сшита» регулярным образом из некото­рого количества х шестиугольников и некоторого количества у пя­тиугольников, то у обязательно равно 12.

Слушатель: В любом случае?

А.С.: В любом. Как ни экспериментируй, что ни делай, чему бы х ни равнялось, х = 200, х = 300, ... Но у = 12. Ровно 12, не 12 ООО, не 120. От размера мяча не зависит, от размера лоскутков не за­висит, от того, как сшивать, не зависит. Этоматематическая теорема.

Слушатель: Невероятно...

А.С.: Есть абсолютное доказательство этой теоремы. Если вы хотите сшить футбольный мяч из пятиугольников и шестиуголь­ников, пятиугольников обязательно будет ровно 12.

Слушатель: Какой диаметр?

А.С.: Не важно: ни диаметр, ни размер лоскутков, ни то, как сшивать. Вы никогда не сошьете ничего другого. Какие бы прика­зы не издавала... ну, скажем, фабрика «Спортинвентарь». Ска­жем, придет к власти новая футбольная партия и скажет: «Отны­не сшивать мячи так, чтобы в них было поровну шестиугольников и пятиугольников». Тогда их обязательно будет 12 к 12.

Слушатель: То есть такое тоже может быть? Прямо 12 к 12?

А.С.: Да. А знаете, как еще может быть? Ноль шестиугольни­ков и 12 пятиугольников. Ни одного шестиугольника, одни пяти­угольники.

Слушатель: А зачем тогда шестиугольники?

А.С.: Видимо, для того, чтобы мяч был гладкий. Ноль шести­угольников12 пятиугольников. 200 шестиугольниковвсё рав­но 12 пятиугольников.

Слушатель: Скажите, а вот эта теорема появилась уже после футбольного мяча? Или футбольный мяч появился раньше?

А.С.: Футбольный мяч появился «чуть-чуть» раньше. Если честно, теорему эту полностью осознали примерно 150 лет назад. Но этот результат, как и очень многие другие, должен быть отнесен к Эйлеру. Леонард Эйлер жил больше половины жизни в Петер­бурге и похоронен там же на Смоленском лютеранском кладбище. Он ввел в математику понятие инварианта. Эйлер показал, что есть в математике такие вещи, которые не меняются, что бы ты ни делал. И настоящая математикаэто поиск таких вещей. Эйлер доказал потрясающую по красоте формулу, сейчас я ее нарисую, а может быть, даже докажу. Кстати, есть такой архитектурный объект «Монреальская Биосфера» или геодезический купол, со­зданный Ричардом Фуллером Бакминстером. Гигантский сегмент шара, чуть больше, чем полушар, составленный из маленьких ше­стиугольников. Я, когда его увидел, сказал: «Нет. Нет. Нет... Вы не правы, там не могут быть все шестиугольники, либо он сильно искривлен, либо там где-то живут пятиугольники. Ищите».

Мне говорят: «Алексей, как вы это угадали? Мы нашли 5-уголь­ники». Эта конструкция не полный шар, поэтому в ней не 12, а при­мерно 7 пятиугольников. Как же я узнал? Теорема, математика. Она же универсальная для всего. Что абсолютно одинаково в Рос­сии, в Канаде и в Америке? Только математика.

Слушатель: Положение этих пятиугольников, оно тоже опре­делено?

А.С.: Нет. Можно их все сцепить в одном месте. Только полу­чится сильно искривленная форма. Лучше пятиугольники разне­сти. Пятиугольники отвечают за искривление. А что такое искри­вление? Беру Земной шар и рисую на нём треугольник (рис. 24).

На Земном шаре есть где развернуться. Одну из вершин возь­мем на Северном полюсе, две другиена экваторе. А сторонами треугольника, как и положено в геометрии, будем считать отрез­ки двух меридианов и отрезок экватора (ведь по ним измеряется кратчайшее расстояние между точками на земной поверхности!).

Вот и получился у нас равнобедренный треугольник, у которого оба угла при основании прямые. А угол при Северном полюсе любой. Так давайте возьмем его тоже прямым!!!

У нарисованного нами треугольника все углы прямые. Такого не бывает на плоскости. Это геометрия шара, поверхности шара, и вот с этой геометрией связан рассматриваемый нами факт. Он открывает очень глубокую теорию дифференциальную геомет­рию, а также теорию римановых многообразий. Вернемся к фут­больному мячу, состоящему из х шестиугольников и у пятиуголь­ников, и к нашей «неожиданной теореме».

Слушатель: Кратен ли х чему-нибудь?

А.С «ж» может быть равен чему угодно. А вот «у» обязательно равен 12.

Слушатель: То есть четное, нечетное не важно.

А.С.: Абсолютно.

Слушатель: То есть мы можем сделать шар из 130 шестиуголь­ников и 12 пятиугольников, или из 131 и 12?

А.С.: Да, надо подумать и аккуратненько вклеить эти наши 12 пятиугольников.

Слушатель: А связано ли это с количеством сторон в пяти­угольнике и в шестиугольнике?

А.С.: Безусловно. Терпение, доказывать этот факт мы будем позже. Пока что нам нужна подготовительная работа, проделан­ная математиком Эйлером. Леонард Эйлер обнаружил следующий факт. Что такое многогранник. каждый понимает. Любой много­гранник это как бы изломанная поверхность шара. Эйлер нари­совал многогранник на шаре: спроецировал ребра и вершины мно­гогранника. лежащего внутри шара, на поверхность шара. (Слово «спроецировал» означает следующую процедуру: расположил вну­три стеклянного шара макет многогранника, сделанный из прово­лочек. и зажег в центре шара маленькую лампочку. На поверхно­сти шара будут видны тени от ребер это и есть проекции ребер.)

И с помощью этого приема доказал замечательную теорему с совершенно удивительной формулировкой. Называется теорема «Формула Эйлера для многогранника».

Пусть у многогранника будет: В количество вершин. Р количество ребер. Г количество граней. Эти количества мож­но непосредственно подсчитать, глядя на модель многогранника. Тогда обязательно будет

В^Р + Г = 2.

Независимо от того, какой мы взяли многогранник. Теорема верна и для куба, и для тетраэдра (рис. 26). и для любого другого мно­гогранника. имеющего границей «изломанную поверхность шара». Всегда это выражение будет равно 2.

Тетраэдр это любая треугольная пирамида. Раньше в такой форме делали молочные пакеты. Давайте посчитаем у молочного

пакета количество вершин, ребер и граней. Сколько вершин у мо­лочного пакета?

Слушатель: 4.

А.С.: В = 4. Сколько ребер у нашего тетраэдра?

Слушатели: 6.

А.С.: Без сомнения. А граней?

Слушатели: 4.

А.С.: Верна формула? 46 + 4 = 2. Верна.

А теперь рассмотрю другую пирамидучетырехугольную (рис. 27).

У нее 5 вершин, 8 ребер и 5 граней. Формула верна: 5^8 + 5 = 2. Слушатель: А количество вершин и граней всегда совпадает? А.С.: Нет, ни в коем случае не всегда. Давайте посмотрим на куб (рис. 26, слева).

У обычного куба8 вершин, 12 ребер и 6 граней. (Бывают еще и необычные кубы... например, 4-мерные.)

Снова получаем два: 812 + 6 = 2.

Никуда от этой формулы не денешься. Думаю, что до Эйлера эту закономерность тоже кто-то замечал, но важно не первым за­метить, а громко об этом заявить. Так сказать, довести до сведения широких масс.

Не буду сегодня ничего больше доказывать. Вместо этого я рас­скажу о некоторых великих математических загадках прошлого.

Давайте вспомним формулу для решения квадратного уравне­ния с коэффициентами а, Ь, с:

_ ± %/fo24ас Ж_ 2а '

На самом деле не очень важно, как конкретно она выглядит. Важно то, что этоуниверсальный метод решения квадратного уравне­ния. Какие бы они ни были, эти а, Ъ и с, если действие произвести, вы получите какое-то число.

Тут есть две точки зрения на эту ситуацию. Если написа­на некоторая формула, то она может случайно оказаться верной для каких-то чисел а, Ь, с, то есть для какого-то квадратного трех­члена. Для одного случайно оказалась верной, для другого ока­залась верной. Сколько раз нужно проверять, чтобы точно ска­зать, что она всегда верна? Бесконечное количество раз. Но можно сделать иначе. Можно взять эту формулу, подставить в исходное уравнение

ах2 + Ьх + с = О

и убедиться в том, что всё сократится, и вместо символов а, Ь, с слева возникнет ноль. Это и будет означать, если мы верим в язык символов, что формула верна. У нас всё сократилось, в любом случае, какие бы а, Ь, с мы ни взяли.

Слушатель: Простите, а для чего нужна эта формула?

А.С.: Для чего она нужна? Ну, я бы сказал так. Лично для ме­ня ответ такой: для красоты. Для того, чтобы быть уверенным, что математика может дать какие-то универсальные рецепты вычисле­ний. Сейчас, конечно, компьютеры решают задачи посложнее этого уравнения, но раньше она была нужна для быстрого вычисления.

Назад Дальше