Вы распределяете земельные участки, измеряете какие-то прямоугольные куски, у вас получается квадратное уравнение. Можно медленно прикидывать, как это сделать, а можно быстро получить ответ.
Слушатель: То есть практическое применение какое-то было?
А.С.: Ну, раньшеда. Дальше эта идея развивалась так. А что, если я напишу уравнение:
аж3 + Ьх2 + сх + d = О?
Могу я написать универсальную формулу, с помощью которой можно вычислить ж? При этом разрешается складывать, вычитать, умножать, делить и даже извлекать корни, причем любой степени. Но больше ничего не разрешается.
Слушатель: От куба и дальше такого сделать нельзя.
А.С.: Можно; но эту формулу не изучают в школе. Формула для кубического случая была придумана в первой половине XVI века. Несколько математиков работали над этой проблемой одновременно. Сейчас формула носит имя Джироламо Кардано, но он не придумал ее, а опубликовал метод другого математика (т. е. «громко об этом заявил»).
Чтобы выписать эту формулу, мне понадобится целая доска, поэтому я не буду этого делать. Как только поняли механизм решения кубического уравнения, сразу придумали формулу для решения уравнения четвертой степени. Она была еще страшнее. Вывел ее ученик Кардано, по фамилии Феррари. Всё это происходило в XVI веке, когда математики уже свободно обращались с буквами, поэтому был сформулирован самый общий вопрос. Можно ли написать формулу для решения уравнения произвольной степени:
апхп + an-ixn+ ... + a,Q = О
(ап,ап-1,...известные числа. Так обозначают для удобства. А то вдруг не хватит букв алфавита для их обозначения?)?
Пусть она займет 10 досок, пусть она займет 100 досок. Погоня за этой формулой продолжалась до конца XVIII века. А в самом начале XIX века прозрение спустилось на несколько человек сразу, из которых самым главным я считаю французского математика Эвариста Галуа (хотя первым ситуацию в общих чертах осознал Жозеф Луи Лагранж). Было доказано, что никакая конечная формула не может быть решением уравнения произвольной степени. Такой формулы не существует. Не потому, что люди еще глупые или не все формулы перебрали или, может быть, они не так ставили корни. Никакое выражение, содержащее плюс, минус, умножить, разделить и извлечь корень любой степени не может при подстановке в уравнение апхп + а_\хп^1 + ... + ао = О полностью сократиться. Этоматематически строгий результат начала XIX века7.
Еще очень известна теорема Ферма. Доказательство теоремы Фермаэто примерно 120 страниц трудного текста для очень посвященного человека.
Про нее мы поговорим потом, а сейчас просто запишем ее формулировку. Она очень простая.
Ни для каких целых чисел ж, у, г, отличных от нуля, и никакого натурального п, большего 2, не может выполняться равенство:
хп + уп = zn.
Эту теорему доказывали с 1637 по 1994 год. Впоследствии были решены еще две или три величайшие математические проблемы прошлых веков. Сейчас математика пожинает плоды всего своего существования.
Слушатель: Это сделано с помощью компьютеров?
А.С.: Нет. Единственное, что сделали с помощью компьютераэто так называемая «проблема четырех красок». XX векпрорыв в авиации, в космосе. Но самый большой прорыв в это время был в математике. В ней перевернули всё вверх дном: сняли кучу гипотез, превратили их в теоремы. На моей памяти сняли несколько проблем, которые стояли веками, если не тысячелетиями.
Слушатель: А это правда, что у теоремы Ферма нет практического применения?
А.С.: А кто его знает? Она (точнее, метод ее доказательства) может иметь некоторое отношение к физической модели мира. На самом деле, последнее, что интересно математику, это то, какое у теоремы практическое применение. Математика в каком-то смысле сродни настоящей религии. Это вещь в себе. Если она кому- то помогает, математиков это особо не интересует. Люди, которые занимаются прикладной математикой, имеют совершенно другое настроение. Этодругие люди. Как, например, разнятся между собой учителя и чиновники. То же самое с математиками. Человек, который формулу ищет, и человек, который хочет с помощью нее что-то сделать,это два разных человека.
На этом мы закончим первую лекцию. На следующем занятии мы будем доказывать теорему про футбольный мяч и формулу Эйлера.
Лекция 2
А.С.: Сегодня мы займемся тем, что называется топологией. Многие считают ее центральной наукой в математике. Математикаэто центральная наука во всех науках. Топология получается тогда как бы «центром внутри центра», то есть самой главной дисциплиной. Она сформировалась в начале XX века, и постепенно стало ясно, что она лежит в сердце математики. На простом языке, топологияэто геометрия плюс анализ. А можно сказать и по-другому: тот, кто хочет понять самые глубокие и важные закономерности и геометрии, и математического анализа, должен изучать эти науки с топологической точки зрения.
100 лет назад топология уже достаточно хорошо оформилась, а началась она, наверное, с Эйлера (того самого Эйлера, формулу которого мы сегодня будем с вами изучать). Были сформулированы определения важнейших объектов топологии: линия, поверхность, объём, многомерное прост,ранет,во. Было осознано, что у топологических объектов имеется важное свойство: размерность. Например, линияэто одномерный объект (его можно при этом поместить в 1-мерное пространство, в 2-мерное, в 3мерное и даже в так называемое «4-мерное пространство»). Поверхностьдвумерный объект (он может располагаться в 2мерном пространстве, в 3-мерном, 4-мерном и так далее). Тело, имеющее положительный объёмэто 3-мерный объект; но оно может располагаться в 3-мерном, 4-мерном, 5-мерном... пространствах. Ниже всё это будет рассматриваться в самых простых случаях, поскольку свойства топологических объектов, лежащих в 4-мерном, 5-мерном, 6-мерном... пространствах недоступны непосредственному геометрическому восприятию человека. Может быть, это хорошо, что человек не может совершить даже небольшую и короткую по времени прогулку в «подлинное» 4-мерное пространство. Вернувшись из такой прогулки, этот бедняга мог бы с ужасом обнаружить, что сердце у него теперь находится не с левой, а с правой стороны (и ему, кроме того, придется примириться с тем фактом, что он стал левшой, хотя ранее им не был). Так
что с 4-мерным пространством шутки плохи. Но и в 3-мерпом пространстве (казалось бы, так хорошо нам знакомом) топология сумела обнаружить ряд совершенно сногсшибательных фактов. Приступим же к ее изучению (конечно, на общеописательном уровне, не достигая стопроцентной строгости изложения).
Допустим, у вас есть глобус, или футбольный мяч, или арбуз. Это объекты по сути разные, а по форме они одинаковые. Как говорится на житейском языке, это тела, которые имеют форму шара. Однако с точки зрения топологии арбуз резко отличается от глобуса и от футбольного мяча: арбуз внутри заполнен веществом, а глобус и мяч внутри пустые. Разумно считать, что толщина картонной поверхности глобуса и толщина оболочки мяча имеют нулевую толщину. Тогда глобус и мяч являются двумерными объектами, а арбузтрехмерным. Но можно мысленно рассматривать поверхность арбузаполучится «двумерный объект, ограничивающий исходный трехмерный арбуз». Ниже мы будем говорить просто о поверхности шара (неважно, какого диаметра). Допустим, что мяч имеет диаметр 20 см, поверхность арбузадиаметр 50 см, а глобус200 см. Для лучшего понимания, что такое топология, рассмотрим также кубик со стороной 20 см, склеенный из бумаги, и таких же размеров кубик, сделанный из кусочков проволоки, идущих вдоль ребер куба. Итого у нас имеется пять объектов. С общежитейской точки зрения их можно разделить на две группы«круглые» (3 шт.) и «кубообразные» (2 шт.). С точки зрения человека, привыкшего всё измерять сантиметром (например, портного), их надо разделить на две группы по другому принципу: «предметы с размерами порядка 20 см» (3 шт.) и «более крупные предметы» (2 шт.). А с точки зрения математика-тополога, здесь имеются четыре абсолютно одинаковых предмета и один особенный (а именно, проволочный куб). И тополог даже даст обоснование, почему он так считает: первые четыре объекта являются двумерными, а последний объектодномерный. Таким образом, топология не только не видит разницы между поверхностью шара диаметра 20, 50 или 200 см, по и не видит, разницы, между поверхностью куба и поверхностью шара! Итак, тополог надевает на себя «волшебные очки», которые не позволяют определить ни размеры, ни форму предметов. Что же он тогда через них сможет разглядеть? Он сумеет разглядеть самое глубинное отличие представленных ему предметов друг от друга, их, так сказать, конструкцию. Например, добавим к этим пяти предметам еще и бублик с внешним диаметром 20 см и будем интересоваться не самим бубликом, заполненным тестом, а только его поверхностью. А также добавим обыкновенное кольцо из проволоки (диаметром 1 см). Что скажет тогда тополог? «С точки зрения размерности здесь имеется два типа объектов: двумерные и одномерные. Но поверхность бублика резко, принципиально отличается от поверхности шара. Точно так же проволочный кубик резко отличается от кольца из проволоки. Итак, здесь представлены четыре различных топологических типа: поверхность шара (4 предмета), поверхность бублика, окружность, проволочный кубик».
Врезка 1. Упражнение для слушателей (необязательное; но ответ полезно прочесть)
Во времена фашистской Германии в ней процветали ученые- шарлатаны. Один из них на полном серьезе утверждал, что всё космическое пространство вокруг Земли заполнено... льдом. (То есть, что мечтать о космических полетах бессмысленно.) Ну, допустим, это так и есть. Хм. Рассмотрим тогда три объекта: поверхность Земли, внутренность Земли и наружная часть Земли, состоящая, хм, изо льда. Как называются эти объекты на языке топологии? Одинаковы ли с точки зрения топологии второй и третий объект?
ОТВЕТ. Первая часть ответа: первый объектдвумерный, типа сферы. Не имеет граничных точек.
Второй объект: 3-мерный, типа шара. Его граничные точкивсе точки поверхности Земли.
Третий объект: 3-мерный, типа шарового слоя. Граничные точкивсе точки поверхности Земли.
Вторая часть ответа: второй и третий тип топологически различны, так как шаровой слой существенно отличается от шара. Граничные точки у них тем не менее одинаковы.
Третья часть ответа: не следует говорить, что третий объект «бесконечный по размерам», так как в топологии неважно, каковы размеры объектов. Например, если взять поверхность сферы и выкинуть из нее одну-единственную точку, то по житейским представлениям этот объект «конечный по размерам», в то время как плоскость «бесконечна». По правилам же топологического исследования, сфера с «выколотой» точкой имеет тот же топологический тип, что и плоскость.
Возьмем и изогнем, изомнем, растянем поверхность шара, но нигде не порвем;, и не склеим, никакие две точки в одну. Мы можем из нее таким образом получить, например, куб (то есть, естественно, не сам куб, а его поверхность). Чтобы понять, как это делается, покажем, как из круга, изготовленного из резины, получить квадрат (размеры квадрата неважны). Для этого надо в четырех равноудаленных местах границы круга потянуть наружу резиновый слой, пока он не примет форму квадрата. В частности, точки границы круга превратились в точки периметра квадрата.
Можно много чего сделать из резиновой камеры сдутого футбольного мяча. Но есть интуиция, которая подсказывает, что автомобильную (или велосипедную) камеру из камеры футбольного мяча сделать будет затруднительно, даже используя те широкие возможности, которые предоставляет нам топология. Куб, эллипсоид (то есть сжатая поверхность сферы), яблоко, арбузпожалуйста, а вот бублик из шара не сделаешь, не порвав его, либо не склеив между собой некоторые точки. Согласно сказанному выше, надо различать две разные задачи: 1) Из заполненного шара сделать заполненный бублик и 2) Из поверхности шара сделать поверхность бублика. Первая задача «решена» в подписи к рис. 28.
И Эйлер задался вопросом, а можно ли это утверждение доказать? Вроде бы интуитивно оно совершенно понятное. Но матема-
тика ставит задачу перевести очевидное на язык строго доказанного. Ведь если мы откроем цивилизацию, которая, например, живет на плоскости, для ее жителей будет не очевиден рассматриваемый нами факт (см. врезку 2). А с номощыо математики мы сможем передать им содержание теоремы. К чему я клоню?
Врезка 2. Эйнштейно топологии
Однажды А. Эйнштейна попросили совсем кратко, на понятном любому языке, пояснить, в чем состоит суть сделанных им открытий. Он ответил: все мы, люди, словно маленькие жучки с завязанными глазами, ползающие но поверхности большого мяча и воображающие, что двигаемся но плоскости. Я же первый понял, что мир, в котором я живу, искривлен. Но пока не совсем понятно, как именно он искривлен. (То есть, «по-научному», каков топологический тип космоса.)
А вот к чему. Несколько лет назад математик Г. Перельман установил похожий факт, но только в пространстве больших измерений. Факт про фигуры в многомерном пространстве, которые локально похожи на искривленное трехмерное пространство. Мы живом в трехмерном пространстве, мы четвертого измерения не видим и не чувствуем. Мы можем только рассуждать, что четвертое измерение это время, но объять его взором не можем. Поэтому мы не можем говорить так спокойно и убежденно, что сделать из шара тор в пространстве больших измерений нельзя. (Ведь в 4мерном пространстве, как указывалось выше, МОЖНО, не нарушая правил топологии, превратить незаметным образом человека с сердцем, расположенным слева, в человека с сердцем, расположенным справа.)
Нам нужен язык, на котором это можно доказать. И вот для того, чтобы это можно было доказывать, для того чтобы через много лет Перельман смог доказать «гипотезу Пуанкаре» (после того как ее доказали, она вместо гипотезы Пуанкаре стала называться теоремой Перельмана или Пуанкаре Перельмана), Эйлер начал большой путь. Он перевел то, что мы с вами считаем очевидным, в точное, железобетонное математическое рассуждение. Как же он это сделал? Он нарисовал на поверхности шара, мяча, арбуза, глобуса, любого круглого объекта некоторую карту. Иными словами, некий искривленный многогранник (рис. 29).
С точки зрения топологии, любой многогранник это тоже шар. Тетраэдр это шар. куб это шар. октаэдр, любой параллелепипед это всё шары. Например, потому что если их выполнить из резины и надуть, то получится футбольный мяч. то есть шар. Но до работ Эйлера еще не было «точки зрения топологии», так как не было и самой топологии.
Эйлер «чувствовал», что все эти объекты одинаковые. В чём именно? И как это объяснить остальным людям? В особенности его интересовал вопрос: как доказать, что поверхность шара, поверхность бублика, поверхность кренделя неодинаковые?8 В ответ на первый вопрос ясность позже внес Анри Пуанкаре (после того, как Огюст Коши внес должную ясность в вопрос, что такое «непрерывная функция»). Однако Эйлер сразу обратился ко второй задаче (о доказательстве неодинаковости двух поверхностей) и блестяще решил ее.
Эйлер сделал следующее. Он нанес на поверхность шара многогранник картиночку «стран», причем страны необязательно треугольные (рис. 30). (Если говорить о «странах», то надо помнить, что рассматривается «Земной шар», не содержащий морей и океанов.) При этом вся поверхность шара должна быть покрыта многоугольниками.
Главное, чтобы каждая страна была простым плоским объектом, без дырочек, как круг или квадрат. И далее он сделал то же самое с велосипедной камерой. Нанес такой многогранник, который является как бы «остовом» каретного колеса (машинных колес в то время еще не было!). При этом вовсе не обязательно, чтобы количество и вид граней, а также количество вершин и ребер этого многогранника для шара и для колеса были одинаковы.
Более того, они и не могут быть одинаковыми (как мы увидим ниже).
А потом стал считать у этих многогранников эйлерову характеристику: величину ВР + Г.
Число вершин минус число ребер плюс число граней. Как бы мы ни мяли и ни изгибали шар, наши грани«страны» от этого не меняются. (Но, конечно, нельзя так смять страну, чтобы она вся превратилась в отрезок. Такого даже во время наполеоновских войн не происходило! А если говорить серьезно, то отрезокодномерный объект, а странадвумерный.) То есть вершины остаются вершинами, ребраребрами, а граникакими были (например, изогнутым пятиугольником или треугольником), такими и остались. А значит, величина ВР + Г не меняется. Теперь считаем эту величину на колесе (по науке поверхность колеса (или бублика) называется словом «ТОР». А тор, заполненный внутри, называется полнот,орием. Поверхность же шара называется, как известно, сферой). И если сфера может перейти в тор, то картинка на шаре перейдет в картинку на колесе. И, значит, их эйлерова характеристика должна быть одинакова.
Докажем, однако, что у любой фигуры, нарисованной на колесе, эйлерова характеристика равна 0, а у любой фигуры на шареравна 2.
Слушатель: А если бы получилась одна и та же цифра, то что?
А.С.: Мы не смогли бы сделать из этого никакого вывода. Мы бы не смогли сделать вывод, что они одинаковые, но не смогли бы сделать и вывод, что они разные. Но ведь есть и другие подходы, кроме формулы Эйлера. Для более сложных случаев.
Слушатель: Понятно.