Математика для гуманитариев: живые лекции - Алексей Владимирович Савватеев 4 стр.


Вы распределяете земельные участки, измеряете какие-то пря­моугольные куски, у вас получается квадратное уравнение. Можно медленно прикидывать, как это сделать, а можно быстро получить ответ.

Слушатель: То есть практическое применение какое-то было?

А.С.: Ну, раньшеда. Дальше эта идея развивалась так. А что, если я напишу уравнение:

аж3 + Ьх2 + сх + d = О?

Могу я написать универсальную формулу, с помощью которой можно вычислить ж? При этом разрешается складывать, вычитать, умножать, делить и даже извлекать корни, причем любой степени. Но больше ничего не разрешается.

Слушатель: От куба и дальше такого сделать нельзя.

А.С.: Можно; но эту формулу не изучают в школе. Форму­ла для кубического случая была придумана в первой половине XVI века. Несколько математиков работали над этой проблемой одновременно. Сейчас формула носит имя Джироламо Кардано, но он не придумал ее, а опубликовал метод другого математика (т. е. «громко об этом заявил»).

Чтобы выписать эту формулу, мне понадобится целая доска, поэтому я не буду этого делать. Как только поняли механизм ре­шения кубического уравнения, сразу придумали формулу для ре­шения уравнения четвертой степени. Она была еще страшнее. Вы­вел ее ученик Кардано, по фамилии Феррари. Всё это происходило в XVI веке, когда математики уже свободно обращались с буква­ми, поэтому был сформулирован самый общий вопрос. Можно ли написать формулу для решения уравнения произвольной степени:

апхп + an-ixn+ ... + a,Q = О

пп-1,...известные числа. Так обозначают для удобства. А то вдруг не хватит букв алфавита для их обозначения?)?

Пусть она займет 10 досок, пусть она займет 100 досок. Пого­ня за этой формулой продолжалась до конца XVIII века. А в са­мом начале XIX века прозрение спустилось на несколько человек сразу, из которых самым главным я считаю французского мате­матика Эвариста Галуа (хотя первым ситуацию в общих чертах осознал Жозеф Луи Лагранж). Было доказано, что никакая ко­нечная формула не может быть решением уравнения произволь­ной степени. Такой формулы не существует. Не потому, что люди еще глупые или не все формулы перебрали или, может быть, они не так ставили корни. Никакое выражение, содержащее плюс, ми­нус, умножить, разделить и извлечь корень любой степени не мо­жет при подстановке в уравнение апхп + а_п^1 + ... + ао = О полностью сократиться. Этоматематически строгий результат начала XIX века7.

Еще очень известна теорема Ферма. Доказательство теоремы Фермаэто примерно 120 страниц трудного текста для очень посвященного человека.

Про нее мы поговорим потом, а сейчас просто запишем ее фор­мулировку. Она очень простая.

Ни для каких целых чисел ж, у, г, отличных от нуля, и никакого натурального п, большего 2, не может выполняться равенство:

хп + уп = zn.

Эту теорему доказывали с 1637 по 1994 год. Впоследствии были решены еще две или три величайшие математические проблемы прошлых веков. Сейчас математика пожинает плоды всего своего существования.

Слушатель: Это сделано с помощью компьютеров?

А.С.: Нет. Единственное, что сделали с помощью компьюте­раэто так называемая «проблема четырех красок». XX векпрорыв в авиации, в космосе. Но самый большой прорыв в это вре­мя был в математике. В ней перевернули всё вверх дном: сняли кучу гипотез, превратили их в теоремы. На моей памяти сняли не­сколько проблем, которые стояли веками, если не тысячелетиями.

Слушатель: А это правда, что у теоремы Ферма нет практи­ческого применения?

А.С.: А кто его знает? Она (точнее, метод ее доказательства) может иметь некоторое отношение к физической модели мира. На самом деле, последнее, что интересно математику, это то, ка­кое у теоремы практическое применение. Математика в каком-то смысле сродни настоящей религии. Это вещь в себе. Если она кому- то помогает, математиков это особо не интересует. Люди, которые занимаются прикладной математикой, имеют совершенно другое настроение. Этодругие люди. Как, например, разнятся между собой учителя и чиновники. То же самое с математиками. Чело­век, который формулу ищет, и человек, который хочет с помощью нее что-то сделать,это два разных человека.

На этом мы закончим первую лекцию. На следующем занятии мы будем доказывать теорему про футбольный мяч и формулу Эйлера.

Лекция 2

А.С.: Сегодня мы займемся тем, что называется топологией. Многие считают ее центральной наукой в математике. Математи­каэто центральная наука во всех науках. Топология получает­ся тогда как бы «центром внутри центра», то есть самой главной дисциплиной. Она сформировалась в начале XX века, и постепен­но стало ясно, что она лежит в сердце математики. На простом языке, топологияэто геометрия плюс анализ. А можно ска­зать и по-другому: тот, кто хочет понять самые глубокие и важные закономерности и геометрии, и математического анализа, должен изучать эти науки с топологической точки зрения.

100 лет назад топология уже достаточно хорошо оформилась, а началась она, наверное, с Эйлера (того самого Эйлера, фор­мулу которого мы сегодня будем с вами изучать). Были сфор­мулированы определения важнейших объектов топологии: линия, поверхность, объём, многомерное прост,ранет,во. Было осознано, что у топологических объектов имеется важное свойство: раз­мерность. Например, линияэто одномерный объект (его мож­но при этом поместить в 1-мерное пространство, в 2-мерное, в 3­мерное и даже в так называемое «4-мерное пространство»). По­верхностьдвумерный объект (он может располагаться в 2­мерном пространстве, в 3-мерном, 4-мерном и так далее). Тело, имеющее положительный объёмэто 3-мерный объект; но оно может располагаться в 3-мерном, 4-мерном, 5-мерном... простран­ствах. Ниже всё это будет рассматриваться в самых простых случаях, поскольку свойства топологических объектов, лежащих в 4-мерном, 5-мерном, 6-мерном... пространствах недоступны не­посредственному геометрическому восприятию человека. Может быть, это хорошо, что человек не может совершить даже неболь­шую и короткую по времени прогулку в «подлинное» 4-мерное про­странство. Вернувшись из такой прогулки, этот бедняга мог бы с ужасом обнаружить, что сердце у него теперь находится не с ле­вой, а с правой стороны (и ему, кроме того, придется примириться с тем фактом, что он стал левшой, хотя ранее им не был). Так

что с 4-мерным пространством шутки плохи. Но и в 3-мерпом про­странстве (казалось бы, так хорошо нам знакомом) топология су­мела обнаружить ряд совершенно сногсшибательных фактов. При­ступим же к ее изучению (конечно, на общеописательном уровне, не достигая стопроцентной строгости изложения).

Допустим, у вас есть глобус, или футбольный мяч, или арбуз. Это объекты по сути разные, а по форме они одинаковые. Как гово­рится на житейском языке, это тела, которые имеют форму шара. Однако с точки зрения топологии арбуз резко отличается от гло­буса и от футбольного мяча: арбуз внутри заполнен веществом, а глобус и мяч внутри пустые. Разумно считать, что толщина кар­тонной поверхности глобуса и толщина оболочки мяча имеют ну­левую толщину. Тогда глобус и мяч являются двумерными объек­тами, а арбузтрехмерным. Но можно мысленно рассматривать поверхность арбузаполучится «двумерный объект, ограничи­вающий исходный трехмерный арбуз». Ниже мы будем говорить просто о поверхности шара (неважно, какого диаметра). Допустим, что мяч имеет диаметр 20 см, поверхность арбузадиаметр 50 см, а глобус200 см. Для лучшего понимания, что такое топология, рассмотрим также кубик со стороной 20 см, склеенный из бума­ги, и таких же размеров кубик, сделанный из кусочков проволоки, идущих вдоль ребер куба. Итого у нас имеется пять объектов. С об­щежитейской точки зрения их можно разделить на две группы«круглые» (3 шт.) и «кубообразные» (2 шт.). С точки зрения чело­века, привыкшего всё измерять сантиметром (например, портного), их надо разделить на две группы по другому принципу: «предме­ты с размерами порядка 20 см» (3 шт.) и «более крупные предме­ты» (2 шт.). А с точки зрения математика-тополога, здесь имеют­ся четыре абсолютно одинаковых предмета и один особенный (а именно, проволочный куб). И тополог даже даст обоснование, почему он так считает: первые четыре объекта являются двумер­ными, а последний объектодномерный. Таким образом, тополо­гия не только не видит разницы между поверхностью шара диаме­тра 20, 50 или 200 см, по и не видит, разницы, между поверхностью куба и поверхностью шара! Итак, тополог надевает на себя «вол­шебные очки», которые не позволяют определить ни размеры, ни форму предметов. Что же он тогда через них сможет разглядеть? Он сумеет разглядеть самое глубинное отличие представленных ему предметов друг от друга, их, так сказать, конструкцию. На­пример, добавим к этим пяти предметам еще и бублик с внешним диаметром 20 см и будем интересоваться не самим бубликом, за­полненным тестом, а только его поверхностью. А также добавим обыкновенное кольцо из проволоки (диаметром 1 см). Что скажет тогда тополог? «С точки зрения размерности здесь имеется два типа объектов: двумерные и одномерные. Но поверхность бублика резко, принципиально отличается от поверхности шара. Точно так же проволочный кубик резко отличается от кольца из проволо­ки. Итак, здесь представлены четыре различных топологических типа: поверхность шара (4 предмета), поверхность бублика, окруж­ность, проволочный кубик».

Врезка 1. Упражнение для слушателей (необязательное; но ответ полезно прочесть)

Во времена фашистской Германии в ней процветали ученые- шарлатаны. Один из них на полном серьезе утверждал, что всё космическое пространство вокруг Земли заполнено... льдом. (То есть, что мечтать о космических полетах бессмысленно.) Ну, до­пустим, это так и есть. Хм. Рассмотрим тогда три объекта: по­верхность Земли, внутренность Земли и наружная часть Земли, состоящая, хм, изо льда. Как называются эти объекты на языке топологии? Одинаковы ли с точки зрения топологии второй и тре­тий объект?

ОТВЕТ. Первая часть ответа: первый объектдвумерный, типа сферы. Не имеет граничных точек.

Второй объект: 3-мерный, типа шара. Его граничные точкивсе точки поверхности Земли.

Третий объект: 3-мерный, типа шарового слоя. Граничные точ­кивсе точки поверхности Земли.

Вторая часть ответа: второй и третий тип топологически раз­личны, так как шаровой слой существенно отличается от шара. Граничные точки у них тем не менее одинаковы.

Третья часть ответа: не следует говорить, что третий объ­ект «бесконечный по размерам», так как в топологии неважно, каковы размеры объектов. Например, если взять поверхность сфе­ры и выкинуть из нее одну-единственную точку, то по житейским представлениям этот объект «конечный по размерам», в то вре­мя как плоскость «бесконечна». По правилам же топологического исследования, сфера с «выколотой» точкой имеет тот же тополо­гический тип, что и плоскость.

Возьмем и изогнем, изомнем, растянем поверхность шара, но нигде не порвем;, и не склеим, никакие две точки в одну. Мы можем из нее таким образом получить, например, куб (то есть, естествен­но, не сам куб, а его поверхность). Чтобы понять, как это дела­ется, покажем, как из круга, изготовленного из резины, получить квадрат (размеры квадрата неважны). Для этого надо в четырех равноудаленных местах границы круга потянуть наружу резино­вый слой, пока он не примет форму квадрата. В частности, точки границы круга превратились в точки периметра квадрата.

Можно много чего сделать из резиновой камеры сдутого фут­больного мяча. Но есть интуиция, которая подсказывает, что ав­томобильную (или велосипедную) камеру из камеры футбольного мяча сделать будет затруднительно, даже используя те широкие возможности, которые предоставляет нам топология. Куб, элли­псоид (то есть сжатая поверхность сферы), яблоко, арбузпо­жалуйста, а вот бублик из шара не сделаешь, не порвав его, либо не склеив между собой некоторые точки. Согласно сказанному вы­ше, надо различать две разные задачи: 1) Из заполненного шара сделать заполненный бублик и 2) Из поверхности шара сделать поверхность бублика. Первая задача «решена» в подписи к рис. 28.

И Эйлер задался вопросом, а можно ли это утверждение дока­зать? Вроде бы интуитивно оно совершенно понятное. Но матема-

тика ставит задачу перевести очевидное на язык строго доказанно­го. Ведь если мы откроем цивилизацию, которая, например, живет на плоскости, для ее жителей будет не очевиден рассматриваемый нами факт (см. врезку 2). А с номощыо математики мы сможем передать им содержание теоремы. К чему я клоню?

Врезка 2. Эйнштейно топологии

Однажды А. Эйнштейна попросили совсем кратко, на понятном любому языке, пояснить, в чем состоит суть сделанных им откры­тий. Он ответил: все мы, люди, словно маленькие жучки с завя­занными глазами, ползающие но поверхности большого мяча и во­ображающие, что двигаемся но плоскости. Я же первый понял, что мир, в котором я живу, искривлен. Но пока не совсем понятно, как именно он искривлен. (То есть, «по-научному», каков топологиче­ский тип космоса.)

А вот к чему. Несколько лет назад математик Г. Перельман установил похожий факт, но только в пространстве больших из­мерений. Факт про фигуры в многомерном пространстве, которые локально похожи на искривленное трехмерное пространство. Мы живом в трехмерном пространстве, мы четвертого измерения не ви­дим и не чувствуем. Мы можем только рассуждать, что четвертое измерение это время, но объять его взором не можем. Поэто­му мы не можем говорить так спокойно и убежденно, что сделать из шара тор в пространстве больших измерений нельзя. (Ведь в 4­мерном пространстве, как указывалось выше, МОЖНО, не нару­шая правил топологии, превратить незаметным образом человека с сердцем, расположенным слева, в человека с сердцем, располо­женным справа.)

Нам нужен язык, на котором это можно доказать. И вот для то­го, чтобы это можно было доказывать, для того чтобы через много лет Перельман смог доказать «гипотезу Пуанкаре» (после того как ее доказали, она вместо гипотезы Пуанкаре стала называться те­оремой Перельмана или Пуанкаре Перельмана), Эйлер начал большой путь. Он перевел то, что мы с вами считаем очевидным, в точное, железобетонное математическое рассуждение. Как же он это сделал? Он нарисовал на поверхности шара, мяча, арбуза, гло­буса, любого круглого объекта некоторую карту. Иными словами, некий искривленный многогранник (рис. 29).

С точки зрения топологии, любой многогранник это тоже шар. Тетраэдр это шар. куб это шар. октаэдр, любой парал­лелепипед это всё шары. Например, потому что если их выпол­нить из резины и надуть, то получится футбольный мяч. то есть шар. Но до работ Эйлера еще не было «точки зрения топологии», так как не было и самой топологии.

Эйлер «чувствовал», что все эти объекты одинаковые. В чём именно? И как это объяснить остальным людям? В особенности его интересовал вопрос: как доказать, что поверхность шара, по­верхность бублика, поверхность кренделя неодинаковые?8 В ответ на первый вопрос ясность позже внес Анри Пуанкаре (после то­го, как Огюст Коши внес должную ясность в вопрос, что такое «непрерывная функция»). Однако Эйлер сразу обратился ко вто­рой задаче (о доказательстве неодинаковости двух поверхностей) и блестяще решил ее.

Эйлер сделал следующее. Он нанес на поверхность шара мно­гогранник картиночку «стран», причем страны необязательно треугольные (рис. 30). (Если говорить о «странах», то надо по­мнить, что рассматривается «Земной шар», не содержащий морей и океанов.) При этом вся поверхность шара должна быть покрыта многоугольниками.

Главное, чтобы каждая страна была простым плоским объек­том, без дырочек, как круг или квадрат. И далее он сделал то же самое с велосипедной камерой. Нанес такой многогранник, ко­торый является как бы «остовом» каретного колеса (машинных колес в то время еще не было!). При этом вовсе не обязательно, чтобы количество и вид граней, а также количество вершин и ре­бер этого многогранника для шара и для колеса были одинаковы.

Более того, они и не могут быть одинаковыми (как мы увидим ниже).

А потом стал считать у этих многогранников эйлерову харак­теристику: величину ВР + Г.

Число вершин минус число ребер плюс число граней. Как бы мы ни мяли и ни изгибали шар, наши грани«страны» от это­го не меняются. (Но, конечно, нельзя так смять страну, чтобы она вся превратилась в отрезок. Такого даже во время наполеоновских войн не происходило! А если говорить серьезно, то отрезокод­номерный объект, а странадвумерный.) То есть вершины оста­ются вершинами, ребраребрами, а граникакими были (на­пример, изогнутым пятиугольником или треугольником), такими и остались. А значит, величина ВР + Г не меняется. Теперь счи­таем эту величину на колесе (по науке поверхность колеса (или бублика) называется словом «ТОР». А тор, заполненный внутри, называется полнот,орием. Поверхность же шара называется, как известно, сферой). И если сфера может перейти в тор, то картинка на шаре перейдет в картинку на колесе. И, значит, их эйлерова характеристика должна быть одинакова.

Докажем, однако, что у любой фигуры, нарисованной на колесе, эйлерова характеристика равна 0, а у любой фигуры на шареравна 2.

Слушатель: А если бы получилась одна и та же цифра, то что?

А.С.: Мы не смогли бы сделать из этого никакого вывода. Мы бы не смогли сделать вывод, что они одинаковые, но не смогли бы сделать и вывод, что они разные. Но ведь есть и другие подходы, кроме формулы Эйлера. Для более сложных случаев.

Слушатель: Понятно.

Назад Дальше