Звуковые консонансы той же природы, что и космические! Вот она, пифагорова «музыка сфер»! Сферы небесных тел (Солнца, Земли, Луны, «неподвижных звёзд») в своём гармоничном согласии/созвучии подобны музыке! А музыка рождена космосом, Вселенной! Всё единый узел.
«10» священное число! (Земля между Солнцем и Луной внутри звёздной сферы.)
И в самом деле, это ведь число двойного узла: правого и левого. Их совмещение рождает Пентаграмму само совершенство Золотого сечения (хотя Пифагор не употреблял этого термина, как ты знаешь; но он постиг саму с у т ь этого явления, пронизывающего великое во Вселенной и малое на Земле). Это взаимодействие квинт, прародительниц музыкального строя (квинт и их перевёртышей-кварт).
Да, всего лишь разница-разность между солнечным и лунным годом на Земле (10 дней 10 градусов) и поразительное совпадение звуковых консонансов в «пункте 72» плюс-минус крошка-комма.
«10» для Пифагора число, к тому же, особое ещё и потому, что т р е у г о л ь н о е. Странно?
Если в д у м а т ь с я то не странно.
Равносторонний треугольник знаменует собою идею совершенства-равенства: равенства сторон-отрезков и углов. Он подобен явлению «градуса» меры, которой измеряют и углы, и дуги (углы и отрезки окружности).
В равносторонний треугольник вписывается само число «10» в виде точек-«узелков», скрепляющих внутренние подобные малые треугольники:
Рис. автора.
А теперь давай ещё разочек взглянём на уже известную нам таблицу гармоник, на ту её часть, где представлены совершенные консонансы в виде волн, бегущих туда-обратно:
Рис. автора.
Совместим геометрический и волновой образы:
Рис. автора.
Попробуем совместить так, чтобы узлы совпадали. (У бегущих туда-обратно звуковых волн есть у з л ы и так называемые п у ч н о с т и. Об этом ты можешь узнать из книги проф. А.Г.Белявского «Теория звука в приложении к музыке»). Так нам треугольник покажет именно частоты или длины волн интервалов-консонансов в виде отношений/пропорций/дробей.
Рис. автора.
Музыкальный (и космический, конечно же) треугольник!
Музыкальная «десятка»!
Особенность всех чисел, принимающих участие в этой «магии» такова, что при сложении они и образуют «десятку»: 1+2+3+4 = 10
О, как непросто всё было у Пифагора!
Всё связано со всем.
А как же Пифагор поступил с КОММОЙ?
Комма своим явлением словно намекала на солнечное время на Земле (спираль солнечного года). Согласно Боэцию, она п р е в ы ш а л а консонанс диапазона-октавы («перехлёстывала через край»). Как солнечное время на Земле «перехлёстывает» кольцо в 360˚ на 5˚ (дней). На 1/72.
(Вот ещё раз: Звук и Время на Земле одной природы, космической!)
Те, кто думают, что Пифагор остановился, преткнулся о тот факт, что реальный звук словно не желает строго подчиняться консонансу (торопится вслед за Солнцем), они говорят, что пифагоров строй подобен спирали.
Но давай вглядимся повнимательнее в измерительный прибор Пифагора монохорд: ящик. На ящике шкала с делениями. Струна. Один конец струны закреплён жёстко колком, похожим на гвоздь. А другой конец струны свисает свободно. Он перекинут через колёсико-блок, и к нему подвешен груз. Ещё есть передвижная перекладина ( её называют «кобылкой», наверное, потому что бегает туда-сюда) для изменения пропорций струны чтобы получать различные интервалы-звуки.
Но нас интересует свободный конец струны. Для чего так?
Воспитывать КОММУ! Сдерживать её слишком солнечный темперамент. Приучать её к к о н с о н а н с у.
Пифагор был тем ещё Тотом! Только поступил он противоположно, и благодаря этому Луна получила возможность отыграться вернуть свою 1/72 долю. Как?
Если частота звука слегка зашкаливает, то есть чуть выше, чем необходимо для консонанса, эту частоту можно изменить: понизить, уменьшить, изменив натяжение струны, чуть ослабив его. Струна станет толще, «массивнее», «ленивее», будет колебаться менее активно. И напряжение звуковой волны уменьшится, и звук понизится в тоне. И комма вернётся в рамки диапазона. Кольцо замкнётся.
Для этого придётся вернуть 1/72 долю шкалы консонансов ( на нашей ленте частот) Луне. 73/72-х станут 72/72.
Как мог действовать Пифагор?
Сама проблема с коммой, по-видимому, возникла, когда пришлось приводить к консонансу звучание нескольких струн, изначально настроенных в соответствии с расчётами интервалов. Для этой цели служил другой прибор: полихорд (греч. polys «многий», множество, horda струна).
Сама проблема с коммой, по-видимому, возникла, когда пришлось приводить к консонансу звучание нескольких струн, изначально настроенных в соответствии с расчётами интервалов. Для этой цели служил другой прибор: полихорд (греч. polys «многий», множество, horda струна).
На этом приборе мы видим четыре струны для основных консонансов: примы, октавы, квинты, кварты.
Примой может стать любой тон-звук. От него и будут выстраиваться все остальные соотношения звуков. Разница в комму проявит себя на октавной струне (73/72= 1,0138888). Она натянута в два раза сильнее струны примы (если жильная струна), или в два раза тоньше (если металлическая). Её натяжение нужно уменьшить на 1/72 (0,0138888.) и ещё совсем чуть-чуть. Об этом «чуть-чуть», может быть, ещё поговорим, если не устанем.
То есть:
Идеальная шкала консонансов по расчёту должна быть 72/72. Но при этом мы слышим звук на 1/72 выше расчетного, как если бы шкала была 73/72. Чтобы услышать консонанс 72/72, нам нужно спуститься до отметки 71 (ослабить натяжение струны) «по Луне». Тогда мы опять услышим звук на 1/72 выше, над отметкой 71, т.е. 72/72.
Струна квинты (если жильная) натянута в полтора раза сильнее струны примы ( как если бы мы растянули 72 деления на длину 108; 72х1,5=108), или толщина её (если струна металлическая) = 2/3 толщины струны примы.
Что мы услышим? Мы услышим звук тоже примерно на 1/72 выше нужного, т.е. не 108/72, а 109/72. Нам нужно ослабить натяжение струны до отметки 107 («по Луне»), и ещё чуть-чуть. Мы услышим то, что нужно: 0,0138888х 108= 1,499 «чуть-чуть».
Аналогично со струной кварты.
Струна кварты (если жильная) натянута в 4/3 раза (примерно в 1,33333. раза) сильнее струны примы (как если бы мы растянули 72 деления на на почти 96: 1,333333х 72 = 95,999999), или толщина струны (если струна металлическая) = ¾ струны примы.
Что мы услышим? Мы услышим звук также примерно на 1/72 выше нужного, т.е. не 96/72, а 97/72. Нам нужно ослабить натяжение струны «по Луне», чтобы мы услышали необходимую высоту звука: 95/72 «чуть-чуть».
Так можно поступать со струнами и для других интервальных звуков. На полихорде можно разместить и 6, и 7 струн для этих целей, смоделировав таким образом лиру.
Странно ведёт себя звук. Мы слышим его «по Солнцу», а струны, чтобы получить консонансы, нужно настраивать «по Луне».
И здесь тоже не всё так просто, как в египетском мифе о Времени. Ведь солнечный год чуть больше 365 дней, за 4 года набегает своя «комма» примерно в одни сутки. Да и лунный год не ровно 355 дней. Мы округляем, чтобы увидеть главные пропорции, увидеть структуру. Мы привыкли всё сводить к завершённости, к уравнениям. А движение существует благодаря неравенствам пусть небольшим, с разницей в «чуть-чуть», но неравенствам.
Звук, как и Время, происходит из движения. Сами волны это движение. Движение подразумевает какое-то неравенство. И конечно же, консонансы не могут быть идеальными. И наш слух готов мириться с небольшими неравенствами, которые держатся на «чуть-чуть». Мы их как будто не слышим «округляем», как иррациональные числа мы склонны округлять.
Кстати, если ты когда-нибудь всё-таки заглянёшь в книгу А.Г.Белявского «Теория звука в приложении к музыке», ты узнаешь из рекомендаций настройщикам фортепиано, что чистые интервалы при настройке необходимо понижать иначе консонансов не получится, настройка инструмента потерпит крах.
Пифагор об этом узнал из правил поведения космических объектов и обнаружил эти же правила в поведении звуков.
И Генрих Рудольф Герц, физик 19 века, «изобретатель» герца единицы измерения частоты периодических процессов, в том числе волн, похоже, не противоречил Пифагору, соединившему космос, время, звук. Герц служит также единицей измерения времени.
Только в отношении звуковых волн Герц уточнил пифагорово «чуть-чуть». Например, интервал квинта определяется отношением частот не 1,5 или 1,499(в переводе на десятичные дроби), а 1,498
Может быть, потому что и сам солнечно-лунный календарь со времён Пифагора как-то уточнили И поведение волн было более тщательно исследовано физиками: добавились параметры скорости, амплитуды, всего того, что вносит коррективы в строгую зеркальную симметрию обычных дробей, выражающих обратность пропорций длин и частот волн : 2/1, 1/2;
3/2, 2/3; 4/3, 3/4
Рис. автора.
Из-за этих самых обычных дробей с их строго зеркальной симметрией Пифагора стало как-то принято (однако далеко не всеми теоретиками музыки, но всё-таки многими) «подозревать» в неточности. Но! Как-то забывается при этом о разработанной им с особой тщательностью системой настройки. Сторонники Пифагора как раз это учитывают.