Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей - Марат Авдыев 7 стр.


Рис. 2.4. Рассечение гиперкуба. Случай двумерного пространства. Обратите внимание на уравнения x2 = x1 или привычнее y = x  это линяя под углом 45 градусов или биссектриса угла. Подумайте, как будут расположены точки на прямой, описываемой уравнением x2 =-x1


 А почему они будут одинаковы?  задумчиво спросил Борщов.

 Потому что каждая пирамида имеет одинаковую высоту, равную как раз половине ребра гиперперкуба и основания каждой пирамиды одновременно являются гранями гиперкуба, а в силу симметрии грани между собой конгруэнтны, проще говоря равны. Более того эти пирамиды правильные, их грани равны и боковые ребра равны, поскольку являются полудиагоналями гиперкуба, что составляет a * n /2.

 Ага, вижу .


Рис. 2.5. Рассечение гиперкуба. Случай трёхмерного пространства.


 Матвей, ты хочешь сказать, что эти пирамиды также вписаны друг в друга: большая, малая и средняя?  спросила его Татьяна.

 Да, они также вписаны как и гиперкубы, но я их не стал изображать, чтобы не затруднить восприятие.

 Я кажется догадалась, ты сейчас расскажешь нам о симметрии!  предвосхитила с улыбкой Татьяна.

 Совершенно точно!  ответил Матвей. Все, что касается соотношения объёмов гиперкубов повторяется и для этих пирамид, но в силу симметрии мы можем сфокусироваться лишь на одной пирамиде, если хотите, называйте гиперпирамиде, но первое проще

 Матвей, вдруг заговорил после небольшой паузы Борщов,  если Вы всё-таки склоняется нас в пользу геометрической наглядности, то не могли бы Вы сформулировать и саму Великую теорему в геометрической форме?

 С радостью!  ответил Матвей. Он перелистнул пару листов и наконец с расстановкой зачитал:

Формулировка теоремы Ферма в геометрической форме

+++++++++++++++++++++++++++++++++++++++++++++++++++++++

В n-мерном пространстве объем a-Малого гиперкуба (объединение 1n и последовательное наращивание k слоёв) прибавить объем b-Среднего гиперкуба (наращивание ещё l слоёв) образует объем c-Большого гиперкуба (ещё m слоёв). Ребра гиперкубов  целые числа. Все слои следуют последовательно и непрерывно, пронумерованы натуральными числами. Чтобы правая и левая часть уравнения Ферма были равны, необходимо соблюдение ряда условий:

с одной стороны:

центральная симметричность фигуры в виде трёх вложенных гиперкубов, непрерывность следования слоёв, их полное заполнение гиперкубиками

с другой стороны:

объём a-Малого гиперкуба равен объему множества точек между с-Большим и b-Средним гиперкубами.


При n> 2 эти условия являются взаимоисключающими и невыполнимы.

+++++++++++++++++++++++++++++++++++++++++++++++++++++++

Легко убедиться на примере любой (обозначается как ) Пифагоровой тройки, что последнее условие, в случае такой тройки, выполняется в двумерном пространстве, т.е. для вписанных друг в друга квадратов. Формула теоремы Ферма  это аналог теоремы Пифагора, но в n-мерном пространстве. Если хотя бы Пифагорова тройка в n-мерном пространстве найдется, то Теорема Ферма и его уравнение будут опровергнуты.

 Пока все понятно, кроме слоя, что это такое?  спросил Борщов.

 Строго математически мы вводим определение слоя S как множества точек в n  мерном пространств, полученное в результате разности множеств точек вписанных друг в друга гиперкубов, с общей вершиной, рёбра которых отличаются на единицу, как на экзамене ответил Матвей (см. Рис 2.2.).


 А если не вершины, а центры гиперкубов общие,  указав на шахматную доску, сказала Татьяна,  то рёбра гиперкубов, ограничивающие слой будут отличаться на двойку?

 Абсолютно точно!  кивнул Матвей.  Но мы будем выбирать то или иное множество фигур.

1) множество фигур «начало координат в вершинах» вписанными друг в друга гиперкубов, совмещенных по произвольной вершине

или

2) в «начало координат в центре всех трёх гиперкубов an, bn, cn».

Обе геометрических фигуры соответствующих каждому из только то заданных множеств точек пространства, преобразуются друг в друга за счет отражений от гиперплоскостей, перпендикулярных каждой из n осей координат либо рассечения фигуры на «гиперквадранты» и масштабирования. Вспомните наши эксперименты с салфеткой!  Матвей схватил со стола сложенную дважды пополам салфетку и продемонстрировал ее всей компании.

 Под термином гиперквадрант понимается, например, подпространство только неотрицательных значений   Матвей приготовился выдать строгое определение но его перебили.

 Проще говоря это салфетка сложенная на четыре части, а точнее её малый квадратик?  задала наводящий вопрос Татьяна.

 Да

 Ну так и скажи, мы же не на экзамене  назидательно сказала Татьяна.

 Итак, коллеги, для начала неплохо, очень даже неплохо, начала подытоживать встречу Борщов.  давайте опишем какое примерно это должно быть это направление, вернее, где может скрываться доказательство? И Борщов, пригласил широким жестом высказаться каждого.

Оно должно быть очевидным, и на первый взгляд, совершенно невероятным

 задумчиво произнесла Татьяна.

Его можно понять с минимальным количеством формул или совсем без формул

 добавил Матвей.

Все посмотрели на одиннадцатилетнего Артура  собравшись духом, он каким-то официальным тоном сказал:

Такое доказательство должен понимать любой потребитель, категории двенадцать плюс!

 Вот как глубоко в нашу жизнь проник маркетинг!  назидательно шутя заметила Татьяна. А в целом,  продолжала Татьяна: хорошо бы провести опрос среди знакомых и знакомых их знакомых (вот здесь как раз и могут пригодиться социальные сети!), кто сможет пересказать по памяти доказательство Великой теоремы Ферма? За исключением от силы сотни математиков  Гуру в теории чисел и лиц с фотографической памятью, способных точно запомнить полторы сотни страниц текста, этого не сможет сделать никто!

 Именно поэтому поиск Истины и наглядных доказательств нельзя остановить с присуждением Абелевской премии, заметил Борщов.

Итак группа выработала основные правила

встречаться каждую в неделю;

терпеливо перебирать разные варианты, даже немного крейзи, тщательно прорабатывать детали;

«не залезать в дебри»;

искать простое наглядное доказательство, понятное школьнику средних классов школы;

и не посещать Всемирную паутину, соцсети без самой крайней необходимости.

Последнее условие выдвинул Борщов, объясняя это тем, что Всемирная паутина и антисоциальные, как он любил их называть, сети, особенно те, которые выполаскивают мозги, наполняя их приколами и всяким мусором, сильно ограничивают наше творческое воображение. Во-первых, это отрицательный опыт других «лузеров» (Борщов при этом выразительно посмотрел на Артура), которые искомого доказательства не нашли, и наводят на искателей излишние комплексы во-вторых, это постоянные манипуляции сознания и сбивание с толку. Какие-то всезнайки постоянно кричат: это невозможно, это делается лишь так-то и так-то, только у нас о ты, ничтожнейший, получишь шанс со скидкой и так далее Не даром старина Манфред Шпитцер написал свою скандальную книгу: «Цифровая деменция или антимозг»

[Шпитцер Манфред Антимозг: цифровые технологии и мозг/ Манфред Шnитцер; пер. с немецкого А. Г. Гришина  Москва: АСТ, 2014.  288 с. ISBN 978-5-17-079721-9].

Ребята приводили аргументы против цифрового «аскетизма», восхваляя работу в группах в коллаборации, плюсы Всемирной паутины, но затем согласились, что не будут читать, смотреть ничего кроме недостающей литературы и переводов на английский язык специальных терминов, на месяц или даже больше заблокируют свои аккаунты в сетях для того, чтобы мобилизоваться к достижению общей цели. Матвей не смог сдержать улыбки вспоминая кличку Борщова  Борщ или профессор кислых щей: когда надо профессор мог быть удивительно занудным и упрямым.

Александр Николаевич молча положил кнопочный мобильник на стол и кивнул на него: дескать, обычной звонилки достаточно, в крайнем случае SMS.

 Словом, звучит все это грандиозно!  прихлопнул в ладоши профессор, и ребята знали: это означает конец диалога и одновременно то, что он доволен встречей.

И тут раздался сигнал бип-бип на часах у Матвея, который вскочил словно ошпаренный кипятком: Ой, у нас начинается День физики в нашей школе, а наш класс отвечает за расстановку приборов для демонстрации экспериментов, у меня осталось уже меньше часа, так что я лечу!

И Матвей оставил дружную компанию единомышленников на самом интересном моменте.

 Ну, уважаемые коллеги, какие ещё у нас остались вопросы?  обращаясь к Татьяне и Артуру подытожил Борщов.

Назад Дальше