А здесь вершина каждого гиперкуба, выделенного цветом, совпадает с началом координат, в дальнейшем начало координат будет помещаться также в центр гиперкуба. Фигуры в виде композиции гиперкубов начало координат в вершинах и начало координат в центрах гиперкубов преобразуются друг в друга за счет отражения от гиперплоскостей и масштабирования.
Матвей сделал паузу и продемонстрировал на салфетке с пунктирным изображением квадратов, нарисованными трубочкой от коктейля, которую он слегка обмакивал в кофе словно гусиное перо, как легко складывается и раскладывается обратно четыре одинаковых квадрата в разных частях салфетки на рисунке 2.3 выше.
Обратите внимание, сложить, это все равно, что рассечь фигуру гиперплоскостью, перпендикулярной определенной оси, или просто прямой для двумерного случая, прокомментировал Матвей, демонстрируя салфетку на просвет, ну вот, квадраты почти совпали. Так, совмещаем их центры с началом координат, а грани делаем перпендикулярными каждой из n осей. Теперь можно разложить салфетку, что равносильно операции отражения фигуры от выбранной нами гиперплоскости. Далее Матвей снова, продолжил водить карандашом как указкой по следующему рисунку, комментируя:
Рассмотрим случай целых положительных, т. е. натуральных чисел a, b, c, затем и случай отрицательных чисел. По определению гиперкуб an в n-мерном пространстве это множество точек пространства, удовлетворяющее условию: каждая компонента больше чем минус, но меньше, чем плюс половина ребра гиперкуба: a ½a <xj <½a.
Стоп, перебила Татьяна, Артур, тебе все понятно?
Примерно половина сказанного, как-то неуверенно ответил, Артур.
Профессор Борщов одобрительно посмотрел на Татьяну и примирительно сказал:
Ребята, Вы только что сами убедились, как легко я сел в лужу по простому вопросу отражения в зеркале. Предлагаю, отбросить математический формализм в сторону и говорить на языке школьника 34 класса. Ок?
Ну ладно, попробую ещё нагляднее, ответил Матвей, извлекая из портфеля шахматную доску, деревянные детские кубики и маркеры для письма по доске. эта доска навощена тонким воском, и поэтому на ней можно легко писать вот этими маркерами, затем стирать бесследно и снова писать, я уже пробовал. На возьми, Артур, обвели три квадрата на шахматной доске размером три на три, четыре на четыре и пять на пять клеток, да при этом начиная с одного и того же места, вот здесь, например, как будто это листы на дереве, растущие из одной точки (см. Рис. 2.2. выше).
Артур легко справился с задачей, он начертил малый синий, затем средний жёлтый и наконец, большой красный квадраты с общей вершиной, примерно так, как на рисунке.
Можешь ли ты, Артур сосчитать площадь малого, добавить к нему площадь среднего квадрата и сравнить с площадью большого? Артур водя пальцем по шахматной доске начал сосчитал вслух количество квадратов и кивнул: да, действительно девять плюс шестнадцать будет двадцать пять.
Но ведь это просто теорема Пифагора, недоуменно сказал он, -мне папа о ней рассказывал, а ещё я слышал, что в честь открытия этой теоремы Пифагор велел заколоть сто быков.
И с той поры все скоты дрожат, когда открывается новая теорема! пошутил Борщов.
Матвей охотно продолжил. Он взял в руки детский деревянный кубик и начал окружать его слоем других кубиков, комментируя свои действия словами:
Представим себе, что я каменщик, что строю дома в многомерном пространстве, но прямо сейчас я работаю в привычном для нас трёхмерном. Я беру единичный кубик, назовем его гиперкубик, беру также цемент или сильный строительный клей и обмазываю тонким слоем каждую грань гиперкубика. В данном трёхмерном случае у меня получается просто куб с ребром три, легко убедиться, что в нём двадцать семь гиперкубиков, то есть элементарных кубиков.
Всё это ясно, сказал Артур, а остальные молча кивнули в знак одобрения.
Матвей, сосредоточившись на рисунке, пояснял:
Пусть a-Малый гиперкуб образуется путём наслаивания некоторого количества слоёв равной единичной толщины, например один сантиметр или один дециметр, метр не важно, вокруг гиперкубика, я его буду обозначать его как единичка в степени n или 1n, при этом b-Средний гиперкуб охватывающий a-Малый, получается путем добавления например l слоёв единичной толщины, c-Большой гиперкуб содержит ещё m аналогичных слоёв. В результате уравнение Теоремы Ферма геометрически можно представить образно говоря, как многомерный торт, состоящий из трёх видов слоистых коржей толщиной вложенных друг в друга.
Или просто ящички, ставленные в другие ящички как русская матрёшка уточнила Татьяна.
Да с радостью поддержал её Матвей.
Рис. 2.3. Сечение (пронзание) трёхмерного куба двумерной плоскостью. Между слоями сделан единичной толщины сделан зазор, также равный единице, для наглядности.
А что такое многомерный куб? вдруг спросил Матвея Борщов.
Ах, да! -воскликнул, Матвей, я должен был это рассказать с самого начала. Он взял чистый лист и стал чертить: Точка, отрезок длиной а, квадрат а2, трёх мерный куб а3 тессеракт a4 и т. д. это гиперкубы соответственно нольмерного, одномерного, двумерного, трёхмерного, четырёх мерного пространства В этом ряду каждая следующая фигура размерности n образуется путем перемещения гиперкуба размерности n-1 на длину ребра а в направлении, поперечном каждому из n -1 других.
Представьте себе, что мы объясняем двумерному существу, живущему на плоскости, как можно двигаться вверх и вниз. Это конечно, трудно, но например возьмём вот эту прокладку для обуви, и Матвей как фокусник извлёк из под стола две новые обувные стельки, завёрнутые в полиэтилен, распечатал упаковку.
Я могу убедить математика, живущего на плоскости, что если бы он смог прибегнуть к помощи трехмерного пространства, то без труда заменил бы левую стельку правой и наоборот. А для нас, трёхмерных существ, так можно было бы поступить с ботинками, а именной взять левый ботинок перевернуть его в четырёхмерном пространстве и получить правый и опять же наоборот из правого -левый!
Я об этом где-то читал в детстве, задумчиво заметил Борщов.
Но ведь пространство больше трёх, ну может быть ещё четырехмерное с добавлением оси времени, задумчиво сказал вслух Татьяна, словом такие фигуры существуют лишь в нашем воображении, они выдуманные, а не реальные
А реальны ли отрицательные числа? А комплексные числа? вдруг спросил Борщов. Матвей приготовился ответить, но Борщов кивком головы дал ему понять: позвольте мне, коллеги, это быстро объяснить простыми словами. Отрицательные числа используется в финансах и бухгалтерии, без них невозможна работа рыночной экономики, то есть мы сопоставляем отрицательным числам реальные объекты: банковский кредит, налоги и так далее. Что касается комплексных чисел, то они упрощают работу с радиоволнами, оптикой. У каждого из Вас мобильник это реальность? Безусловно. Что касается физических формул, то в них используются пятые, шестые и более высокие степени, аналогичная ситуация в социологии, маркетинге другими словами, гиперкубы моделируют материальные объекты. Продолжайте, пожалуйста, Матвей.
И Матвей продолжал:
Гиперкуб обладает свойством симметрии. Если расположить начало координат в центре гиперкуба, то каждая его вершина будет находится на расстоянии половина ребра a умножить на квадратный корень n, что легко вычисляется по теореме Пифагора. Перпендикуляр, опущенный из центра гиперкуба на любую его грань, проходит через её центр и длина образуемого отрезка (высоты любой из совершенно одинаковых из 2n гиперпирамид, на которые рассекается гиперкуб составляет половину ребра гиперкуба ½а). Легко убедиться, что грань гиперкуба это гиперкуб размерности на единицу меньше
А я видел фильм про гиперкуб! вдруг перебил его Артур. -Там он как- то странно крутился на шарнирах
Да, это тессеракт, подтвердил Матвей или четырехмерный гиперкуб, но его показывают с эффектом параллакса или о степенях выше трёх мы ещё поговорим, а пока достаточно сравнить двухмерный, он показал на шахматную доску и трёхмерный случаи, и он коснулся фигуры из деревянных кубиков.
Давайте рассечем нашу фигуру из трёх вложенных друг в друга гиперкубов на равные гиперпирамиды, конкретно квадраты мы рассечем прямыми линиями на четыре треугольника, а кубы на шесть совершенно одинаковых пирамид, как раз по числу граней.
Рис. 2.4. Рассечение гиперкуба. Случай двумерного пространства. Обратите внимание на уравнения x2 = x1 или привычнее y = x это линяя под углом 45 градусов или биссектриса угла. Подумайте, как будут расположены точки на прямой, описываемой уравнением x2 =-x1
А почему они будут одинаковы? задумчиво спросил Борщов.