Утилизация и переработка отходов - Юрий Степанович Почанин 7 стр.


Невозвратимые вещества. Утилизация промышленных отходов данной группы невозможна. Материалы полностью утратили первоначальные свойства, а вместе с тем форму, структуру. Их отправляют сразу на полигоны для размещения с целью захоронения.

Глава 3. Методы обезвреживания и утилизации токсичных отходов

Все опасные отходы производства характеризуются такими признаками, как: содержание в своем составе вредных для здоровья человека, животных и жизнеспособности растений веществ. Основные источники опасных отходов представлен на рис.3.1.



Рис. 3.1. Основные источники опасных отходов


В России на свалки поступают отходы, в составе которых имеются особенно опасные для здоровья населения: мышьяк, никель, свинец, жидкая или в твердом виде ртуть, а также хром, отходы калия и натрия, и ряд других химически активных веществ. Кроме того, к токсичным отходам также могут отнести лекарственные и фармацевтические препараты, отходы, образуюшие при нефтепереработке, разведке, добыче, хранении, транспортировке нефти и нефтепродуктов, а также при чистке резервуаров, обезвреживании сточных вод, авариях. Значительную токсичность имеют промывочные жидкости, содержащие твердую фазу, дизельное топливо и нефтепродукты, а также поверхностно-активные вещества (ПАВ).

Основными токсическими выбросами и стоками являются:

соединения фосфора и ртути;

металлоорганические компоненты;

сернистые соединения (сероуглерод, сероводород, диоксид серы);

фториды;

циановодород;

оксиды азота;

производные хлора и непосредственно хлор;

альдегиды;

щелочи;

амины;

минеральные кислоты;

органические растворители.

Особенно опасными токсинами являются соединения соли и тяжелых металлов: кадмия, свинца, ртути, хрома и др.

Наиболее экологически опасным канцерогеном является оксид CrO3, содержащий шестивалентный Cr6+, переходящий при нагревании в наиболее устойчивый Cr2O3, содержащий трехвалентный Cr3+. Шестивалентный хром Cr6+ содержится в исходных материалах для производства теплоупоров (природные хромиты, плавленый периклазохромит), в самих шпинелидных теплоупорах, а также в портландцементе, в который Cr6+ диффундирует из шпинелидных футеровок вращающихся цементообжигательных печей.

Выделяют коэффициенты геотоксичности (Тл) химических элементов по геохимическим группам. К супертоксичным (Тл = 15) относят Hg, Cd, Tl, Be, U, Rn, радионуклиды Sr и др.

Высокотоксичными (Тл = 10) являются Pb, Se, Te, As, Sb, B, F, Th, V, Co, Ni, Ru. Опасными (Тл = 5) считаются Cu, Zn, S, Bi, Ag, Ba, Mo, Os, Pt, Yn, Ge, Sr, W, Al, Li, Mn и др. В группу общетоксичных (Тл = 1) входят литофильные элементы Ti, Na, K, Ta, Rb, Ca, Si, Nb. Литофильные элементы- химические элементы, составляющие около 93% массы земной коры и около 97% массы солевого состава океанической воды.

Экологические проблемы решаются двухэтапно:

I этап ликвидация токсичности отходов и превращение их в безопасные материалы;

II этап применение множества обычных существующих технологий производства из полученных материалов ценной продукции с широкой областью применения и высокой эффективностью.

Комплекс работ по утилизации отходов представлен на рис.3.2. Все отходы, которые не задействованы в дальнейшей переработке, подлежат утилизации на специально предназначенных для такой цели полигонах огромных площадей, технически оборудованных сооружениями, предотвращающими загрязнение окружающей среды.

Обезвреживание один из возможных этапов перед утилизацией, если отходы представляют опасность и можно снизить уровень негативного воздействия для окружающей среды.

Рис. 3.2. Комплекс работ по утилизации отходов


Существует несколько способов обезвреживания токсичных промышленных отходов в зависимости от их агрегатного состояния и химического состава.

В качестве обеззараживания отходов перед их утилизацией их подвергают переработке методами, которые можно разделить на следующие группы:

термическиесжигание в печах различных типов,

химическиеэкстрагирование с помощью растворителей, отвердение с применением добавок;

физические и физико-химические менять физическую структуру отходов с помощью силового поля, применение специально подобранных реагентов, изменяющих физико-химические свойства, с последующей обработкой на специальном оборудовании;

биологические микробиологическое разложение в почве непосредственно в местах хранения, биотермическое разложение.

физические и физико-химические менять физическую структуру отходов с помощью силового поля, применение специально подобранных реагентов, изменяющих физико-химические свойства, с последующей обработкой на специальном оборудовании;

биологические микробиологическое разложение в почве непосредственно в местах хранения, биотермическое разложение.

3.1. Термические методы

Сущность термообработки заключается в сжигании горючих отходов или огневой обработке негорючих отходов высокотемпературными (более 1000°С) продуктами сгорания топлива. Эффективными считаются термические методы, при которых основным является тепловое воздействие (нагревание или окисление):

термообработка отходов;

уничтожение с помощью ИК-нагрева;

уничтожение в высокоэффективном электрическом реакторе (fluid wall destruction);

сжигание в кипящем слое (fluidized bed system);

пиролиз;

окисление суперкритической водой.

Аппараты для огневого обезвреживания и переработки отходов включают в себя: слоевые топки, барабанные вращающиеся печи, многоподовые печи, камерные печи, шахтные печи, топки котельных агрегатов, реакторы с псевдоожиженном (кипящим) слоем, пенно-барботажные реакторы рис.3.3.



Рис. 3.3. Некоторое оборудование для сжигания твердых отходов


В зависимости от типа отходов и способа обезвреживания огневой метод подразделяют на три типа: сжигание отходов, огневой окислительный метод, огневой восстановительный метод.

Сжигание отходов, способных гореть самостоятельно (горючих отходов),  наиболее простой и надежный метод их обезвреживания. Для обеспечения устойчивого процесса горения сжигание отходов проводится при температуре отходящих газов 1200-1300°С. Данный метод обеспечивает получение ценной продукции: отбеливающая земля, активированный уголь, известь, сода и др. Химический состав промышленных отходов определяет содержание дымовых газов (SOХ, P, N2, H2SO4, HC1), соли щелочных и щелочноземельных элементов плюс инертные газы.

Огневой окислительный метод обезвреживания негорючих отходов заключается в том, что их вводят в поток высокотемпературных продуктов сгорания топлива. При смешении газообразного отхода с дымовыми газами происходит его нагрев и окисление горючих компонентов за счет кислорода дымовых газов или кислорода, содержащегося в отходах. Токсичные компоненты подвергаются окислению, термическому разложения и другим химическим превращениям с образованием безвредных газов (С02, Н20, N2) и твердых остатков (оксидов металлов, солей).

Огневой восстановительный метод отличается от огневого окислительного проведением процесса обезвреживания (или только стадии огневой обработки) происходит в восстановительной среде (при отсутствии свободного кислорода в печной атмосфере). Данный метод используется для уничтожения токсичных отходов без получения каких-либо побочных продуктов, пригодных для дальнейшего использования в качестве сырья или товарных продуктов. В результате образуются безвредные дымовые газы и стерильный шлак, сбрасываемый в отвал. Так можно обезвреживать газообразные и твердые выбросы, бытовые отходы и некоторые другие.

Чтобы достичь хорошей степени разложения промышленных отходов, особенно галоидосодержащих, печь, предназначенная для сжигания продуктов, должна обеспечивать необходимое время их нахождения в зоне горения, хорошее перемешивание реагентов с кислородом при определенной температуре. Количество кислорода регулируется, чтобы не образовывались галогены, а полностью переходили в галогеноводороды, необходимо избыточное количество воды и как можно меньше кислорода, чтобы образовывалось меньше сажи.

Недостаток метода заключается в необходимости предварительной сортировки отходов. Они не должны содержать в своем составе соединения фосфора, галогенов и серы. В противном случае в процессе горения, а также в результате неполного сгорания будут образовываться высокотоксичные канцерогенные газовые выбросы, содержащие диоксины и фураны.

Диоксины и фураны-две структурно близкие группы полихлор органических веществ. Среди них выделяют 7 диоксинов, обладающих особенно высокой токсичностью и 10 фуранов, свойства которых близки диоксинам. Эти вещества относят к стойким органическим загрязнителям, обладают высокой стабильностью и длительным периодом полураспада, для диоксинов он составляет 7-11 лет.

Назад Дальше