Ценность ваших данных - Александр Константинов 9 стр.


Среди академических работ, в которых рассматривается иерархия DIKW, наиболее ранней стала статья Милана Желены[54] «Системы поддержки управления: На пути к интегрированному управлению знаниями»[55]. В ней описана схема последовательного продвижения от данных к знаниям. Ученый предложил упрощенные определения уровней иерархии, основанные на знании ответов на простые вопросы.

 Данные  «не знаю  ничего» (know-nothing).

 Информация  «знаю  что» (know-what).

 Знания  «знаю  как» (know-how).

 Мудрость  «знаю  почему» (know-why).

В то же время Желены заметил, что, хотя данные и информация (благодаря их атомарной, дробной, нецелостной природе) могут быть сгенерированы без интерпретации человеком, знания и мудрость зависят от человека и контекста и не могут быть рассмотрены без использования процедур оценки и принятия решения человеком.

Автором одного из наиболее систематизированных и целостных описаний взаимосвязи понятий «данные», «информация», «знания» и «мудрость» часто называют Рассела Акоффа[56]. В 1989 году был опубликован текст его президентского обращения к Международному обществу общесистемных исследований (International Society for General Systems Research, ISGSR) под заголовком «От данных к мудрости»[57].

Хотя размышления Акоффа относятся к иерархии типов содержания человеческого разума, они справедливы и по отношению к информационным системам. Иерархия описывается следующим образом. «Мудрость» находится на вершине иерархии. Ниже следуют «понимание»[58], «знание», «информация» и в самом низу  «данные». Каждый из уровней включает содержание уровней, расположенных ниже,  например, не может быть мудрости без понимания и понимания без знания.

Акофф предлагает следующие определения данных, информации, знаний и мудрости, а также связанных с ними процессов трансформации.

 Данные  это символы, представляющие свойства объектов, событий и их окружения. Это результаты наблюдений. Наблюдать означает ощущать. Технология ощущений, ее инструментализация, конечно, высоко развита у человека от природы. Информация, как уже отмечалось, извлекается из данных с помощью их анализа, во многих аспектах которого компьютеры превосходны.

Данные, подобно железной руде, не имеют ценности, пока они не преобразуются в соответствующую полезную форму. Поэтому разница между данными и информацией не структуральная, а функциональная, данные обычно редуцируются при их преобразовании в информацию.

 Информация состоит из описаний, ответов на вопросы, начинающиеся с таких слов, как «кто», «что», «где», «когда», «сколько». Информационные системы генерируют, запоминают, извлекают и обрабатывают данные. Во многих случаях обработка носит статистический или арифметический характер. В любом случае информация выводится из данных.

 Знание есть ноу-хау, например о том, как система работает. Знание позволяет преобразовать информацию в инструкции. Оно делает возможным контроль над системой.

Знание может быть обретено двумя путями: либо получением его от тех, кто им обладает, либо извлечением из собственного практического опыта. В любом случае приобретение знания есть обучение. Когда программируются компьютеры, они «обучаются», как сделать что-то.

 Мудрость есть способность увеличивать эффективность по цели, (effectiveness), в то время как информация и знание сосредоточены на эффективности по средствам (efficiency)[59].

Мудрость имеет большую ценность благодаря ментальной функции, которую мы называем суждением. Все оценки эффективности основаны на логике, которая может быть определена, а значит, запрограммирована и автоматизирована. Эти принципы общи и объективны. Мы можем говорить об эффективности действия безотносительно к исполнителю. А по отношению к суждению это не так. Ценность действия всегда зависит от того, кто действует, редко когда она одинакова для двух исполнителей, даже если они делают одно и то же. Эффективность по средствам не связана с мотивами деятельности; а эффективность по целям определяется именно этическими и эстетическими ценностями. Они являются уникальными и персональными.

По мнению Акоффа, элементы иерархии DIKW имеют временное измерение. Информация, подобно новостям, довольно быстро стареет. Знание живет дольше, хотя и оно неизбежно устаревает. Мудрость имеет вечную значимость для человечества (если она не утрачивается).

По мнению Акоффа, элементы иерархии DIKW имеют временное измерение. Информация, подобно новостям, довольно быстро стареет. Знание живет дольше, хотя и оно неизбежно устаревает. Мудрость имеет вечную значимость для человечества (если она не утрачивается).

Позже американские эксперты в области теории организаций (Bellinger и др.[60]) выступили с критикой расширения Акоффом иерархии DIKW за счет «понимания»», уточнив, что «понимание» не является отдельным уровнем, а скорее поддерживает переходы с предыдущих уровней на следующие (рис. 2.1).


* Bellinger G., Castro D., Mills A. Data, Information, Knowledge, & Wisdom, 2004.  URL: http://www.systems-thinking.org/dikw/dikw.htm.


Согласно приводимому исследованию данные представляют факты или утверждения о событии без связи с другими вещами.

Пример. Идет дождь.

Информация содержит понимание какой-либо связи, возможно причинно-следственной.

Пример. Температура упала на 15 градусов, а потом пошел дождь.

Знания отражают паттерн, который связывает факты и обычно обеспечивает высокий уровень предсказуемости относительно того, что описано или что произойдет дальше.

Пример. Если влажность очень высокая и температура существенно падает, то влага вряд ли сможет удержатьcя в атмосфере, поэтому обычно идет дождь.

Мудрость воплощает более глубокое понимание фундаментальных принципов, содержащихся в знании, которые, по сути, являются основой знаний. Мудрость носит системный характер.

Пример. Идет дождь, потому что идет дождь. И это включает в себя понимание всех взаимодействий, которые происходят между дождем, испарением, воздушными потоками, температурными градиентами и сопровождающими их изменениями.

Чаще всего иерархия DIKW изображается в виде пирамиды (рис. 2.2). Такое графическое представление впервые появилось в работе[61] (об этом, в частности, сообщается в обзорной статье[62]).


* Hey J. The Data, Information, Knowledge, Wisdom Chain: The Metaphorical link, published at Intergovernmental Oceanographic Commission (UNESCO)  OceanTeacher: a training system for ocean data and information management, 2004.  URL: https://web.archive.org/web/20071202033948/http://ioc.unesco.org/Oceanteacher/OceanTeacher2/02_InfTchSciCmm/DIKWchain.pdf.


2.3. Внутри пирамиды знаний

Чтобы составить достаточно полную картину взаимоотношений между уровнями пирамиды знаний в соответствии с современными общепринятыми взглядами, приведем более подробное описание этих уровней. Для этого воспользуемся сведениями из часто цитируемых обзоров наиболее известных монографий и руководств по информационным системам и управлению знаниями[63][64][65][66].

Начнем с определений.

1. Определение данных.

Чаще всего в определениях данных отмечается следующее:

 Данные  это дискретные, объективные факты или наблюдения, неорганизованные и необработанные, не передающие никакого конкретного смысла.

 Элементы данных  это простейшие записанные фрагменты описаний вещей, событий, действий и транзакций.

Данные не имеют смысла или ценности, потому что они лишены контекста и интерпретации.

Интересно, что выделяется преимущественно то, чего не хватает данным,  они лишены смысла или ценности, не организованы и не обработаны. Ввиду этих особенностей определения информации формулируются в терминах данных.

2. Определение информации.

Определения информации, как правило, опираются на ее взаимосвязь с данными. При этом используются такие понятия, как «формат», «структура», «организация», «смысл» и «ценность».

 Информация  это форматированные данные, которые могут быть определены как представление реальности.

 Информация  это данные, которые улучшают понимание предмета.

 Информация  это данные, представленные в форме, позволяющей им быть полезными и значимыми для людей.

 Информация  это данные, обработанные с определенной целью.

 Информация  это данные, которым придан смысл посредством добавления контекста.

Таким образом, информация в большинстве случаев определяется в терминах данных и рассматривается как организованные или структурированные данные[67]. Их обработка обеспечивает соответствие данных конкретной цели или контексту и тем самым делает их значимыми, ценными, полезными и релевантными.

Назад Дальше