1. Объем дозирования отображается на цифровом дисплее на рукоятке пипетки (рис. 1).
2. Требуемый объем устанавливается вращением операционной кнопки, расположенной наверху пипетки (рис. 2). Чтобы увеличить объем дозирования, поверните операционную кнопку против часовой стрелки, чтобы уменьшить объем по часовой стрелке.
3. Убедитесь, что цифры, показывающие объем дозирования, целиком видны в окне дисплея и установлены до щелчка.
4. Запрещается устанавливать объем, выходящий за границы диапазона дозирования пипетки. Прилагая чрезмерное усилие при выкручивании операционной кнопки за пределы диапазона дозирования, Вы можете сломать детали внутреннего механизма, что приведет к поломке пипетки.
ТЕХНИКА ПИПЕТИРОВАНИЯ
А исходное положение
В первая остановка
С вторая остановка
1. Нажмите на операционную кнопку до первой остановки (В). 2. Погрузите наконечник в раствор примерно на глубину 1 см и плавно отпустите кнопку (А).
3. Извлеките наконечник, аккуратно снимая излишки раствора о край резервуара.
4. Выпустите взятый раствор, плавно нажимая на кнопку до первой остановки (В). После примерно секундной паузы нажмите операционную кнопку до второй остановки (С). После выполнения данной операции наконечник должен полнocтью опустошиться.
5. Отпустите кнопку в исходное положение, если необходимо, смените наконечник и продолжайте пипетирование.
Всегда нажимайте и отпускайте операционную кнопку плавно.
Упор на пипетке должен опираться на указательный палец. При работе ВСЕГДА удерживайте пипетку в строго вертикальном положении!
Раздел 1. Простые и сложные белки. Нуклеиновые кислоты. Ферменты, коферменты, витамины
1.1. Семинар «Химия белков, аминокислоты»
Белки это высокомолекулярные соединения, молекулы которых построены из остатков аминокислот, составляют основу структурных элементов клеток и тканей, а также выполняют многообразные жизненно важные функции (транспортные, защитные, регуляторные, каталитические), обусловленные способностью за счет своей уникальной пространственной структуры распознавать другие молекулы и взаимодействовать с ними.
Аминокислоты в молекуле белка соединены между собой пептидными связями (-CO-NH-), образуя полипептидные цепи. Пептидная связь возникает между карбоксильной группой одной аминокислоты и аминогруппой другой аминокислоты, при этом отщепляется молекула воды.
Аминокислоты, кодируемые генетическим кодом и включающиеся в процессе трансляции в белки, называют протеиногенными. В основу современной классификации аминокислот положено химическое строение их радикалов. Каждая аминокислота имеет не только своё название (тривиальное и химическое), но и принятое трехбуквенное сокращение, а также латинский однобуквенный символ.
Следует отметить, что аминокислоты являются не только структурными элементами пептидов и белков, но и входят в состав других природных соединений (коферментов, конъюгированных желчных кислот, антибиотиков). Некоторые аминокислоты являются предшественниками биологически активных веществ (гормонов, биогенных аминов) или важнейшими метаболитами (глюконеогенез, биосинтез и деградация протеиногенных аминокислот, цикл мочевинообразования).
Аминокислоты традиционно делятся на заменимые и незаменимые в зависимости от возможности их синтеза в организме животного. Для большинства моногастричных (нежвачных) животных незаменимыми являются 8 аминокислот: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин, для растущего организма детенышей к незаменимым относят также аргинин и гистидин. Жвачные животные получают незаменимые аминокислоты преимущественно за счет бактериального белка, синтезируемого в рубце.
Незаменимые аминокислоты для человека и некоторых видов животныхВ белках различают несколько уровней структурной организации: первичную, вторичную, третичную и четвертичную структуры. Первичная структура определяется числом и последовательностью аминокислотных остатков, соединённых между собой пептидными связями. Вторичная структура возникает за счёт образования водородных связей между группами >N-H и O=C< данной полипептидной цепи, что приводит к упорядоченному расположению отдельных участков полипептидной цепи в виде α-спиральной или β-складчатой структуры. Третичная структура белков образуется за счёт взаимодействия радикалов аминокислот (водородные связи, ионные связи, дисульфидные мостики, гидрофобные взаимодействия). Четвертичная структура некоторых белков образуется при взаимодействии отдельных полипептидных цепей, обладающих вторичной и третичной структурой.
В белках различают несколько уровней структурной организации: первичную, вторичную, третичную и четвертичную структуры. Первичная структура определяется числом и последовательностью аминокислотных остатков, соединённых между собой пептидными связями. Вторичная структура возникает за счёт образования водородных связей между группами >N-H и O=C< данной полипептидной цепи, что приводит к упорядоченному расположению отдельных участков полипептидной цепи в виде α-спиральной или β-складчатой структуры. Третичная структура белков образуется за счёт взаимодействия радикалов аминокислот (водородные связи, ионные связи, дисульфидные мостики, гидрофобные взаимодействия). Четвертичная структура некоторых белков образуется при взаимодействии отдельных полипептидных цепей, обладающих вторичной и третичной структурой.
Белки условно делят на простые (при гидролизе образуют смесь аминокислот) и сложные, или конъюгированные (состоят из белкового и небелкового компонентов). В качестве небелковой части (простетической группы) конъюгированных белков могут выступать нуклеиновые кислоты, углеводы, липиды, металлы, пигменты, а также фосфорная кислота и коферменты, что находит отражение в классификации данной группы биологических соединений:
хромопротеины
нуклеопротеины
липопротеины
фосфопротеины
гликопротеины
металлопротеины
Хромопротеины содержат окрашенную простетическую группу, например, красные белки гемопротеины (гемоглобин, миоглобин, цитохромы, каталаза, пероксидаза), желтые белки флавопротеины (ферменты класса оксидоредуктаз, содержащие производные рибофлавина).
Нуклеопротеины в качестве простетической группы содержат ДНК или РНК, что объясняет их участие в экспрессии генов и биосинтезе белка.
Липопротеины содержат такие липиды как триацилглицеролы, свободные жирные кислоты, эфиры холестерина, фосфолипиды и отличаются друг от друга процентным содержанием белка и плотностью. Липопротеины встречаются как в свободном виде (ЛП плазмы крови), так и в структурированном (в составе клеточных и внутриклеточных биомембран).
Фосфопротеины участвуют в процессе эмбриогенеза. Это такие белки, как казеиноген молока, вителлин и фосвитин куриного желтка, ихтулин икры рыб. Известно, что фосфорилирование-дефосфорилирование белков и ферментов способ изменения их функциональной активности.
Гликопротеины являются объектом интенсивного исследования, что объясняется многообразием их строения и выполняемых функций. Это гликоконъюгаты, к которым относят большинство белковых гормонов, антитела (иммуноглобулины), белки плазмы крови и молока, интерфероны, факторы комплемента, рецепторные белки.
Металлопротеины представляют белки, содержащие в своей структуре ионы металлов (железа, меди, кобальта, марганца, молибдена, цинка, магния, кальция и др.). Типичные представители металлопротеинов, содержащих негемовое железо, это ферритин, трансферрин, гемосидерин.
Большинство методов анализа белков и аминокислот связаны с их физико-химическим свойствами, например, с наличием определенных функциональных групп, размером и формой молекул, подвижностью в электрическом поле, различным распределением в системе подвижной и неподвижной фазы при разных видах хроматографии, способностью к поглощению в ультрафиолетовой области спектра.
Темы для внеаудиторной теоретической работы по разделу1) Предмет биологической химии. Основные этапы развития биохимии. Важнейшие проблемы современной биохимии. Место биохимии среди биологических наук. Использование достижений биохимии в животноводстве, других областях сельского хозяйства. Химический состав живых организмов.
2) Белки основа структуры и функции живых организмов. Биологическая роль белков. Методы выделения и очистки белков. Аминокислотный состав белков. Классификация аминокислот. Характер связей остатков аминокислот в каждой молекуле белка. Полипептиды и их строение. Биологически активные пептиды.
3) Физико-химические свойства белков. Уровни структурной организации белков: первичная, вторичная, третичная, четвертичная cтруктуры белков. Фолдинг белковых молекул. Понятие о шаперонах. Связь структуры и функции белков.