Холодный ядерный синтез. L E N R - Александр Александрович Шадрин 2 стр.


Для исследований структуры атомного ядра и кварк-глюонной плазмы были предназначены самые дорогостоящие установки в мире и которые завершились строительством Большого адронного коллайдера.

Большой адронный коллайдер ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжѐлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в научно-исследовательском центре Европейского совета ядерных исследований на границе Швейцарии и Франции, недалеко от Женевы. БАК является самой крупной экспериментальной установкой в мире. В строительстве и исследованиях участвовали и участвуют более 10 000 учѐных и инженеров из более чем 100 стран. Большим назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м; адронным из-за того, что он ускоряет адроны; коллайдером из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения. В ускорителе сталкивают протоны с суммарной энергией 14 ТэВ, а также ядра свинца.

Описание работы БАК с протонами.

Атомы водорода поступают строго дозированными порциями в камеру линейного ускорителя (фото8 1), там от них отделяют электроны, оставляя только ядра водорода.


Фото 1. Системы ускорения протонов на БАК.


Протоны несут положительный заряд, что позволяет придавать им ускорение при помощи электрического поля. Отсюда протоны будут двигаться со скоростью равной 1/3 скорости света. Теперь они готовы поступить в бустер или во вторую систему ускорения протонов.

Чтобы максимально повысить плотность потока частиц их разделяют на 4 части, каждая из которых поступает в отдельное кольцо бустера (накопителя). Линейное ускорение здесь уже не эффективно, поэтому применено движение по кругу длинной пути 157 метров. Чтобы придать частицам большую скорость, они проходят по кругу много раз, при этом на них воздействуют пульсирующим электрическим полем. Мощные магниты помогают придать частицам нужное направление и удержать их на круговой траектории. Кольцевой ускоритель разгоняет протоны до 91,6% скорости света, при этом собирает их в плотный пучок. После этого частицы из 4 колец собираются воедино и поступают в протонный синхротрон  эта третья система ускорения протонов. Протяженность синхротрона 628 метров это расстояние протоны проходят за 1,2 секунды, разгоняясь до 99.9% скорости света. Именно здесь достигается точка перехода. К энергии движения частиц добавляется энергия электрического поля, но это не приводит к дальнейшему разгону, потому что частицы уже почти достигли максимально возможной скорости света. Но в результате такого воздействия увеличивается масса протонов, если говорить кратко, то протоны не могут ускоряться, а становятся тяжелее. На этой стадии энергия каждой частицы равняется 25 ГЭВ, при этом протоны становятся в 25 раз тяжелее чем в состоянии покоя.

Теперь начинается 4 стадия системы ускорения протонов. Протонный суперсинхротрон  огромное 7-ми километровое кольцо. Его задача увеличить энергию протонов до 450 ГЭВ. Далее пучки протонов будут готовы к перемещению в большой адронный коллайдер. В нем проложены две вакуумные трубы, по ним в противоположных направлениях, движутся пучки протонов. При помощи специальных устройств новые порции протонов поступают в трубы так, чтобы не мешать движению уже загруженных туда пучков. По одной трубе частицы движутся по часовой стрелки, а по другой  против. Эти трубы пересекаются в четырех местах, где установлены детекторы. Именно здесь протоны можно столкнуть друг с другом. Энергия столкновения в два раза превышает запас энергии каждого протона. В течение получаса в коллайдер поступают около 2800 порций частиц. Все это время коллайдер придает дополнительную энергию частицам двигающимся почти со скоростью света. Каждую секунду протоны проходят 27 километровый круг и более 11 тысяч раз постоянно получая, импульсы ускоряющего электрического поля. Энергия каждого протона уже составляет 7 ТэВ, а масса в семь тысяч раз больше нормальной.

Теперь протоны готовы к столкновению. Направляющий магнит обеспечивает необходимую для этого траекторию их движения. Общая энергия двух сталкивающихся протонов равна 14 ТэВ. Всплеск (фото 1а) от столкновения можно наблюдать в течение двух секунд.

Фото 1а. Всплеск от столкновения пучков протонов.


Траектории выделившихся в результате столкновения частиц анализируют компьютеры, к которым подключены детекторы.

Результаты. Трехмерный портрет протона

Устройство протона по-прежнему остается одной из самых интересных и до сих пор неопределённых тайн в физике элементарных частиц. Более того, в последние годы интерес к ней снова возрос, потому что физики поняли, как получить «трехмерный» портрет быстро движущегося протона, который оказался гораздо сложнее портрета неподвижного протона.

Задачи. Исследования кварк-глюонной плазмы (КГП)  экстремального состояния материи  являются одним из основных направлений работы БАК. К этой задаче добавилось исследование природы сильного взаимодействия еще в одном крупном научном проекте ЦЕРН на установке NA61/SHINE.

Эксперимент ALICE путем лобовых столкновений ультрарелятивистских ядер позволяет воссоздать процесс появления кварк-глюонной плазмы. Установка ALICE  это огромный физический прибор, включающий в себя более 20 детекторных систем. По размеру она сопоставима с домом высотой 16 и длиной 26 метров, весит 10 тысяч тонн и располагается на глубине 56 метров под землей в одной из точек, где пересекаются пучки протонов и ядер, ускоряемых БАК. С 2008 по 2018 год ALICE стабильно работала на пучках Большого адронного коллайдера и вела регистрацию столкновений как протонов, так и ядер свинца, разогнанных почти до скорости света.

Второй фундаментальный научный эксперимент ЦЕРН,  это NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) на Протонном cуперсинхротроне (SPS), одном из ускорительных колец БАК. В эксперименте изучаются адронные конечные состояния, возникающие при взаимодействии различных частиц пучка (пионов, протонов и ядер бериллия, аргона и ксенона) с множеством фиксированных ядерных мишеней. В NA61/SHINE работают 140 физиков из 14 стран и 28 институтов. Основные цели эксперимента NA61/SHINE  исследование природы сильного взаимодействия, поиск критической точки ядерной материи.

Данные, полученные от столкновений встречных пучков ядер золота и свинца (схема эксперимента  внешнее воздействие ядро-ядро с откликом рождения «сжатая-расплавленная» кварк-глюонная плазма), а также пучков золота и дейтерия, во многом противоречивы и до сих пор находятся в стадии поиска ответов на вопросы:

 удалось ли при столкновениях ядер свинца или золота сжать вещество до образования кварк-глюонной плазмы?

 для исследования чётности в кварк-глюонной плазме изучалось движение образующихся микрочастиц во внешнем магнитном поле, создаваемом магнитами детектора,

 кварки различных «ароматов» по-разному движутся в магнитном поле,

 почему так противоречиво ведут себя «струи переходов ионы-адроны-кварки-глюоны»?

 необходимое время регистрации следов этой неуловимой формы чрезвычайно горячей и плотной ядерной материи составляет величину порядка 1023 секунды,

 частицы рождаются более интенсивно, чем ожидалось, а стадия их рождения в сгустке  fireball длится значительно меньшее время, чем предсказывалось теоретически; также, вопреки расчетам, стадия рождения частиц укорачивается с увеличением энергии,

 найдены ли обещанные бозоны Хиггса с массой 125 или 247 Гэв, отвечающие за массу элементарных частиц, и является ли 56 сигм превышения над стандартной ошибкой достоверным результатом открытия этих новых частиц?

 какова природа материи, спина, электрического заряда элементарных частиц и атомных ядер?

Итак результаты от вложенных в строительство и исследования в БАК колоссальных средств множества стран более чем «скромны», если не сказать более скептически.

Введение

В будущей энергосистеме основными источниками электрической и тепловой энергии будет множество распределенных по сети точек небольшой мощности, что в корне противоречит существующей парадигме в атомной отрасли наращивать единичную мощность энергоблока для снижения удельной стоимости капвложений. В этом отношении LENR установки очень гибкие и это уже продемонстрировали М. И. Солин9, А. В. Вачаев и А. Росси, в то время, как другие исследователи продолжают «удивлять мир» незначительными эффектами.

Итак, семь независимых экспертов (пять из Швеции и два из Италии) провели испытания10 высокотемпературного аппарата E-Cat, созданного Андреа Росси, и подтвердили заявленные характеристики. Напомним, что первая демонстрация аппарата E-Cat, основанного на низкоэнергетической ядерной реакции (LENR) трансмутации Никеля в Медь, состоялась 10 лет назад в ноябре 2011г.

Назад Дальше