Итак, семь независимых экспертов (пять из Швеции и два из Италии) провели испытания10 высокотемпературного аппарата E-Cat, созданного Андреа Росси, и подтвердили заявленные характеристики. Напомним, что первая демонстрация аппарата E-Cat, основанного на низкоэнергетической ядерной реакции (LENR) трансмутации Никеля в Медь, состоялась 10 лет назад в ноябре 2011г.
Эта демонстрация вновь, как и знаменитая конференция Флейшмана и Понса в 1989г, возбудила научное сообщество, и возобновило непрекращающийся до сих пор спор между приверженцами LENR и традиционалистами, яростно отрицающими возможность подобных реакций. Следует напомнить, что уже в 1992 году М. И. Солин создал промышленный реактор для производства электроэнергии, магнитной, тепловой и звуковой энергии и когерентного электромагнитного излучения, т.е. на 20 лет раньше А. Росси и более совершенный, но основанный на тех же физических принципах разогрева твёрдого тела до высоких температур. Несколько позже этот ядерный реактор М. И. Солин усовершенствовал Патентом РФ 2 173 894 от 23.08.1999 года..
Теперь указанная выше независимая экспертиза подтвердила, низкоэнергетические ядерные реакции существуют и позволяют генерировать тепловую энергию с удельной плотностью в 10,000 раз большей, чем нефтепродукты.
Аппарат E-Cat А. Росси вырабатывает тепловую энергию с удельной мощностью 440кВт/кг11. Для сравнения, удельная мощность энерговыделения реактора ВВЭР-1000 составляет 111 кВт/л активной зоны или 34,8кВт/кг топлива UO2., БН-800 430кВт/л или ~140кВт/кг топлива. Для газового реактора AGR Hinkley-Point B 13,1 кВт/кг, HTGR-1160 76,5 кВт/кг, для THTR-300 115 кВт/кг. Сопоставление этих данных впечатляет уже сейчас удельные характеристики прототипа LENR- реактора превосходят аналогичные параметры лучших существующих и проектируемых ядерных реакторов деления. Теперь эти параметры следует сравнить с параметрами, полученными М. И. Солиным в 90 -е годы.
Доктор А. А. Рухадзе12 следующим образом подводит итог таким работам:
«Из имеющихся на настоящий момент результатов следует, что низкоэнергетические ядерные реакции это не синтез и не распад, а, по-видимому, некие коллективные ядерные превращения, которые протекают при энергиях недопустимо низких для термоядерных реакций и дают изменение изотопного состава и большое тепловыделение при полном отсутствии остаточной радиоактивности.»
Перед тем как перейти к механизму процессов холодногоядерного синтеза, необходимо вспомнить о неполноте механизмов существующей теории фотосинтеза.
Фотосинтез
Самое наглядное представление о законах природы демонстрируется самой природой это фотосинтез или холодныйатомно-молекулярный распад-синтез с производством свободного кислорода под внешним воздействием фотонов света. Основным органом фотосинтеза является лист. Он анатомически приспособлен к поглощению энергии света и ассимиляции углекислоты. Плоская форма листа, обеспечивающая большое отношение поверхности к объёму, позволяет более полно использовать энергию солнечного света. Вода, необходимая для поддержания и протекания фотосинтеза, доставляется к листьям из корневой системы. Для общего роста растений, как общепризнано в агротехнологии, необходимо лишь тепло, влага, удобрения и свет. Поэтому много противоречий в современной теории фотосинтеза в части участия и количественного баланса с кислородом вызывает углекислый газ атмосферы (всего то 0,03%).
И тем не менее вот как описывается механизм фотосинтеза в САП.
Процессы фотосинтеза фотонами растений и деревьев, приводящих к росту.
На первом этапе происходит поглощение квантов света пигментами, их переход в возбуждённое состояние и передача энергии к другим молекулам фотосистемы (пластохинону).
На втором этапе происходит разделение зарядов в реакционном центре. Молекула воды теряет электрон под воздействием катиона-радикала, образовавшегося из молекулы хлорофилла после потери ей своего электрона и передачи его пластохинону на первом этапе.
Одновременно с этим процессом происходит перенос электронов по фотосинтетической электронотранспортной цепи, что заканчивается синтезом АТФ и НДФН. Первые два этапа вместе называют светозависимой стадией фотосинтеза..
Одновременно с этим процессом происходит перенос электронов по фотосинтетической электронотранспортной цепи, что заканчивается синтезом АТФ и НДФН. Первые два этапа вместе называют светозависимой стадией фотосинтеза..
Третий этап заключается в поглощении второй молекулой хлорофилла кванта света и передаче ею электрона ферредоксину. Затем хлорофилл получает электрон после цепи его перемещений на первом и втором этапах. Ферредоксин восстанавливает универсальный восстановитель НАДФ.
Четвёртый этап происходит уже без обязательного участия света и включает в себя биохимические реакции синтеза органических веществ с использованием энергии, накопленной на светозависимой стадии.
В ходе световой стадии фотосинтеза образуются высокоэнергетические продукты: АТФ, служащий в клетке источником энергии, и НАДФ, использующийся как восстановитель. В качестве побочного продукта выделяется кислород.
Хлорофилл имеет два уровня возбуждения: первый связан с переходом на более высокий энергетический уровень электрона системы сопряжённых двойных связей, второй с возбуждением неспаренных электронов азота и магния порфиринового ядра. При неизменном спине электрона формируются первое и второе возбуждённые состояния, при изменённом триплетное первое и второе.
Второе возбуждённое состояние наиболее высокоэнергетично, нестабильно, и хлорофилл за 1012 с переходит с него на первое с потерей 100 кдж/моль энергии только в виде теплоты.
Передача энергии идёт резонансным путём (механизм Фёрстера) и занимает для одной пары молекул 10101012 с, расстояние, на которое осуществляется перенос, составляет около 1 нм. Передача сопровождается некоторыми потерями энергии (10% от одного типа хлорофилла к другому, 60% от каротиноидов к хлорофиллу), из-за чего возможна только от пигмента с максимумом поглощения при меньшей длине волны к пигменту с большей. Именно в таком порядке взаимно локализуются пигменты, причём наиболее длинноволновые хлорофиллы находятся в реакционных центрах. Обратный переход энергии невозможен.
Однако при этом остаётся неубедительным13 механизм фотосинтеза в части изменения и роста атомно-молекулярного вещества с производством кислорода путём внутренней ионизации атомного электрона для производства атомного распада-синтеза и роста вещества.
Так в работе14 приведён анализ современных сведений в области биохимических механизмов фотосинтеза. Показано, что наши знания об этих процессах все еще неполны или ограничены. Это касается следующих вопросов:
откуда растения берут углерод,
процессов количественного выделения кислорода при фотосинтезе,
ассимиляции углекислого газа,
проявлений С2-фотосинтеза.
Отмечено, что современная трактовка хемиосмотической теории не вполне завершена. При этом единый (по общему признанию) механизм образования АТФ обусловлен разными режимами работы электрон-транспортной цепи фотосинтеза, обозначаемыми как нециклический, циклический и псевдоциклический транспорт электронов. Сделано заключение, что в целом многочисленные и многообразные результаты исследования фотосинтетического процесса все еще недостаточны для того, чтобы овладеть ими для использования в биотехнологических целях.
Здесь происходят более сложные процессы15 квантовой конденсации энергии фотона путём его поглощения с рождением двух замкнутых вихронов, в объёме которых и начинает действовать энергия поглощённого магнитного монополя фотона. Эта же ошибка происходит и при объяснении механизма ядерного холодного распада-синтеза вещества в части изменения ядерного состава путём ионизации частиц ядра для производства ядерного распада-синтеза.
На примере работы одной ячейки реактора Вачаева А. В. и реактора Кладова А. Ф. продемонстрированы основные процессы ионизации электронов с оболочек атома или частиц с ядерных оболочек атома, приводящие к распаду первичной материи и синтезу вторичной. Что такое распад-синтез структурированной материи? Это такой тип процессов, при котором первичная энергия извне, затраченная на высвобождение энергии (распад) из материи, окажется намного меньше вторичной энергии, которая высвободится в ходе последующей реакции (синтез). Для осуществления таких процессов потребуется «огонь фитиля», аналогичный началу химического горения или фотоны света для фотосинтеза.